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1: Short introduction.



Probability Theory (Part A)

Many phenomena in real life are uncertain.

Simple examples: flip a coin, roll the dice, play roulette, ...

Other examples: weather, Euro-Dollar exchange, time you

need to come to the course, how successful is a medication, ...

Any such uncertain phenomenon we shall call experiment.

Probability theory and Mathematical Statistics provide the

necessary tools to model and analyze such uncertain

phenomena.



Probability Theory (Part A)

Mathematically such an experiment can be described as

randomly (whatever that means now) picking an element from a

set Ω, say.

Ω (sample space) describes all possible outcomes.

Flip a coin ⇐⇒ Ω = {H,T}
Roll the dice ⇐⇒ Ω = {1,2,3,4,5,6}

Flip a coin 10 times ⇐⇒ Ω =?

An event is a subset of Ω. A ⊂ Ω happens, if we pick ω in A.

The main target: assign to an event A a probability

P(A) ∈ [0,1].

The mapping A 7→ P(A) which has to satisfy certain axiomatic

properties, is called probability measure.



Probability Theory (Part A)

This looks simple in principle, but it is difficult in practice.

◮ There can be many events. (e.g. Ω = R)

◮ Some logical rules have to hold. (e.g. A ⊂ B then

P(A) ≤ P(B))

◮ A 7→ P(A) should make sense from a modeling point of

view. (e.g. roll the dice P({5}) = 1/6).

◮ ...



Probability Theory (Part A)

Often we are not interested in the outcome ω (the element from

Ω which we have picked) itself, but on some other information it

contains.

Example: 10 times flipping a coin, how often did we get tail?

A random variable (in the sequel, a rv) X can be viewed as a

function mapping the set Ω of all possible outcomes ω of a

random experiment E to (real) numbers.

Example: ω = (H,H,T ,H,T ,H,T ,T ,T ,T ) and X (ω) = 6.

P(X ≤ x) is the probability that we pick an ω, such that

X (ω) ≤ x . Thus P(X ≤ x) = P(ω|X (ω) ≤ x).



Stochastic Processes (Part B)

A stochastic process (in the sequel, a sp) (Xt)t∈T is a collection

of rv that are all defined on the same random experiment.

Remarks: T is called the index set (usually the “time"). It may

be:

◮ countable (❀ discrete-time sp); e.g., T = N (ex: price of a

stock at the end of day t),

◮ uncountable (❀ continuous-time sp); e.g., T = [0,1] (ex:

number of clients in a queue at time t).



Stochastic Processes (Part B)

The state space E is the collection of values the Xt ’s can

assume.

As for the index set, it may be

◮ countable; e.g., E = N (ex: number of clients in a queue at

time t).

◮ uncountable; e.g., E = R
+ (ex: water level of a river at

distance t from the source).

We recall that for a fixed t ∈ T , Xt is simply a random variable

(depending on ω).

For a fixed ω ∈ Ω, t 7→ Xt(ω) is a function from T into the state

space E . This function is called a sample path, a trajectory or a

realization of the sp.

❀ It is natural to plot such sample paths . . .



Various sample paths

Annual strikes in the U.S....

- Discrete-time process.

- Discrete state space.



Various sample paths

The number of clients in the queue of some shop...

- Continuous-time process.

- Discrete state space.



Various sample paths

The daily water level (at a fixed location)...

- Discrete-time process.

- Continuous state space.



Various sample paths

The water level of a river at distance t from the source...

- Continuous-time process.

- Continuous state space.



Various sample paths

Trajectories of a standard Brownian motion

- Continuous-time process.

- Continuous state space.



Goals

An observed series {xt , t ∈ T} can be considered as a

realization of some sp (Xt)t∈T .

Questions:

◮ Which assumptions should we put on the Xt ’s?

◮ How to model dependence?

Goals:

◮ Forecasting.

◮ Strategy.



The ruin problem for an insurance company

where

τ0 = inf{t > 0 : Xt < 0}
is a positive-valued random variable which is known as the time

of ruin.



Differences w.r.t. statistics and time series courses

Also in statistics one studies random variables and in time

series courses one studies stochastic processes.

However, here we assume to know the models which are

underlying the experiment.

Statistics and time series is mainly concerned with finding the

appropriate model (or parameters) or testing if a model is true.

Illustrative example: flip a coin 10 times.

Probability: what is P(#H ≥ 8), assuming that H and T occur

with probability 1/2 each.

Statistics: we have observed (H,H,H,T ,H,T ,H,H,H,H). Is

the coin fair? What is the probability of H to occur?
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2: Basic probability review.



Random events and probability measure

Consider a random experiment E .

Example: rolling 1 dice, 2 dice, 100m world record attempt, ...

The corresponding sample space Ω is the set of all possible

results of E
Example: {1,2, . . . ,6}, {(1,1), (1,2), . . . , (6,6)}, R+

0 , ...

An event A can be associated with a subset of Ω.

Example:

◮ in the 1st E , “obtain 3" ≡ {3}, “obtain an even result"

≡ {2,4,6};

◮ in the 2nd E , “obtain a sum that is ≥ 11"

≡ {(5,6), (6,5), (6,6)};

◮ in the 3rd E , “improving on the world record" ≡ (0,9.58), ...



Random events and probability measure

We can use set operations to define new events. Let A1,A2, ...
be events. Then

◮ A1 ∪ A2 ⇐⇒ A1 or A2 occurs.

◮ A1 ∩ A2 ⇐⇒ A1 and A2 occurs.

◮ A1\A2 ⇐⇒ A1 occurs but A2 doesn’t.

◮ Ac
1 ⇐⇒ A1 doesn’t occur.

◮ ...

◮ Generalization to more than two events is obvious.



Random events and probability measure

We want to associate probabilities with events:

❀ A probability measure P is a function

P : A → [0,1]

A 7→ P[A],

which satisfies

1. 0 ≤ P[A] ≤ 1 for all A ∈ A,

2. P[Ω] = 1, P[∅] = 0,

3. P[∪∞
i=1Ai ] =

∑∞
i=1 P[Ai ], for all collection of pairwise disjoint

A1,A2, . . . ∈ A, σ-additivity).

Here A is the collection of all eligible events.



Random events and probability measure

Example: roll a dice.

One can let

◮ A = P(Ω), i.e., the collection of all subsets of Ω,

◮ P defined by P[A] = #A
#Ω = #A

6
.

Remarks:

◮ One can check that this P is a probability measure

(exercise).

◮ This choice of A and P can be made if #Ω < ∞.

◮ Clearly, it cannot be made if #Ω = ∞. In the general case,

we need to restrict the collection of events under

consideration ...

This leads to the (technical) concept of σ-algebra.



σ-algebra

A σ-algebra (or σ-field) over the set Ω is a non-empty collection

A of subsets of Ω satisfying

1. Ω ∈ A,

2. Ac ∈ A, for all A ∈ A (where Ac := Ω\A).

3. ∪∞
i=1Ai ∈ A, for all A1,A2, . . . ∈ A.

The pair (Ω,A) is called a measurable space.

The triple (Ω,A,P) is called a probability space.

Remarks:

◮ One can check that a σ-algebra is stable by the standard

set operations, such as intersection, union, symmetric

difference . . .

◮ A probability measure is always defined on a σ-algebra

(which validates the definition of P).



σ-algebra

Usually we want to work with some collection F , say, is of

interest. Then one has to work with the σ-algebra σ(F )
generated by F , i.e. with the smallest σ-algebra containing all

elements in F (existence is of course guaranteed).

Most important example:

The so-called Borel σ-field B over Ω = R is

B = σ
(

{

(a,b),a < b
}

)

.

◮ It can be shown that B contains all real intervals.

◮ It clearly plays a central role in probability theory.



Properties of a probability measure

Properties of P (exercises): Let A,A1,A2 ∈ A, then

◮ A1 ⊂ A2 implies P[A1] ≤ P[A2].

◮ P[Ac] = 1 − P[A].

◮ P[A1 ∪ A2] = P[A1] + P[A2], if A1, A2 are disjoint.

◮ P[A1 ∪ A2] = P[A1] + P[A2]− P[A1 ∩ A2].

◮ P[∪∞
i=1Ai ] ≤

∑∞
i=1 P[Ai ].

◮ if A1 ⊂ A2 ⊂ ..., P[∪∞
i=1Ai ] = limi→∞ P[Ai ].

◮ if A1 ⊃ A2 ⊃ ..., P[∩∞
i=1Ai ] = limi→∞ P[Ai ].

Terminology: A occurs a.s. (“almost surely") ⇔ P[A] = 1.



A very important concept

Often working on the probability space itself is complicated.

We only wish to extract certain information of our experiment.

This leads to the concept of random variables, which basically

is nothing but a function X : Ω → R.



Random variables

Let (Ω,A,P) be a probability space. Let (E ,B) be a measurable

space.

A random variable X is a function

X : Ω → E

ω 7→ X (ω),

which is A-measurable. That is

X−1(B) = {ω ∈ Ω |X (ω) ∈ B} ∈ A for all B ∈ B. (∗)

Remark: (*) is the measurability property.



Random variables

Example:

E : flip a coin, Ω = {H,T}, A = P(Ω), P[A] = #A
#Ω .

Some “winning" X may be defined by

X (ω) =

{

−1 if ω = H

1 if ω = T

❀ X is a random variable.



Random variables

Example:

E : 1 dice, Ω = {1,2, . . . ,6}, A = P(Ω), P[A] = #A
#Ω .

Some “winning" X may be defined by

X (ω) =































−30 if ω = 1

−20 if ω = 2

−10 if ω = 3

10 if ω = 4

20 if ω = 5

30 if ω = 6

❀ X is a random variable.



Random variables

A fundamental example:

In a general probability space (Ω,A,P), the indicator function of

the event A ∈ A is defined by

X (ω) =

{

1 if ω ∈ A

0 if ω /∈ A

We usually write X (ω) = IA(ω).

❀ X is a random variable.



Random variables

Some properties of rv:

◮ X ,Y are rv ⇒ X + Y , X − Y , XY , X/Y , max(X ,Y ), and

min(X ,Y ) are rv

◮ X is a rv ⇒ X+ := max(X ,0) and X− := −min(X ,0) are rv

(and hence |X | = X+ + X− is also a rv).

◮ X1,X2, . . . are rv ⇒ supi Xi and infi Xi are rv

◮ X1,X2, . . . are rv ⇒ lim supi Xi and lim infi Xi are rv

◮ ...

Definition: The σ-algebra σ(X ) generated by the rv X is the

smallest σ-algebra that makes X measurable (with respect to

Borel σ-algebra).

Lemma: σ(X ) = X−1(B) = {X−1(B) |B ∈ B}.



Distribution

Let X be an R-valued rv defined on the probability space

(Ω,A,P).

The distribution of X is the probability measure PX defined on

the measurable space (R,B) by

PX [B] := P[X ∈ B], B ∈ B.

❀ classification: there are “essentially" two types of

distributions, discrete and absolutely continuous ones.



Discrete distributions

The distribution PX of X is discrete if there exists a (finite or

infinite) sequence x1, x2, . . . ∈ R such that

PX [B] =
∑

i | xi∈B

P[X = xi ].

Such a distribution is characterized by the values xi

distribution of X

values x1 x2 . . .

probabilities p1 p2 . . .

Example: consider the rv associated with the winning in the

dice game...



Examples of discrete distributions

The Bernoulli distribution

X ∼ Bern(p), with p ∈ (0,1):

Bern(p)

values 0 1

probabilities 1 − p p

Then Binomial distribution

X ∼ Bin(n,p), with n ∈ N0 and p ∈ (0,1):

Bin(n, p)

values 0 1 . . . k . . . n

probabilities (1 − p)n np(1 − p)n−1 . . .
(

n
k

)

pk (1 − p)n−k . . . pn

Interpretation: X ∼ Bin(n,p): number of successes in n independent

similar “(1,0)-trials" (remark: Bin(1,p) = Bern(p)).



Examples of discrete distributions

The Poisson distribution X ∼ P(λ), with λ > 0:

P(λ)
values 0 1 . . . k . . .

probabilities exp(−λ) exp(−λ)λ . . . exp(−λ)λ
k

k !
. . .

Interpretation: later...



Absolutely continuous distributions

Let µ and ν be two measures over (Ω,A). We say that ν is

absolutely continuous with respect to µ if for any A ∈ A,

µ(A) = 0 implies ν(A) = 0

The following Theorem plays a central role in the definition of

conditional expectations.

Theorem: Let µ and ν be two measures over (Ω,A) with µ
being σ-finite. Then ν is absolutely continuous with respect to µ
iff there exists a nonnegative function f : Ω → R

+ such that for

all A ∈ A,

ν(A) =

∫

A

dν =

∫

A

f dµ (1)



Absolutely continuous distributions

The function f in the RN Theorem is essentially unique in the

sense that if f1 and f2 are two functions such that (1) hold, then

f1 and f2 are equal up to µ-measure zero sets.

The set of µ-almost everywhere equal functions is often

denoted as dν
dµ and is called the Radon-Nikodym derivative of ν

with respect to µ.



Absolutely continuous distributions

The distribution PX of X is absolutely continuous if, for all B ∈ B
such that m[B] = 0, m being the Lebesgue measure, we have

PX [B] = 0.

It can be shown (Radon-Nikodym theorem) that, for such X ,

there exists a so-called probability density function (pdf) f such

that, for all B ∈ B,

PX [B] =

∫

B

f (x)dx .

Properties of a pdf: f (x) ≥ 0 and
∫

R
f (x)dx = 1 (of course....)

Such a distribution is characterized by f .

distribution of X

values x

pdf f (x)



Examples of absolutely continuous distributions

The Uniform distribution

X ∼ Unif(a,b), with a,b ∈ R (a < b):

f (x) =

{

1
b−a if x ∈ (a,b)

0 otherwise.

The Gaussian (Normal) distribution X ∼ N (µ, σ2), with µ ∈ R

and σ2 > 0:

f (x) =
1√
2πσ

exp

(

−(x − µ)2

2σ2

)

, x ∈ R.



Examples of absolutely continuous distributions

The exponential distribution X ∼ Exp(λ), with λ > 0:

f (x) =

{

λexp(−λx) if x ≥ 0

0 otherwise.



Cumulative distribution

In both cases, one defines the cumulative distribution function

(cdf) F of X by

F (x) = P[X ≤ x ].

- In the discrete case, F (x) =
∑

i |xi≤x P[X = xi ] =
∑

i |xi≤x pi , so

that F is a step function (exercise).

- In the absolutely continuous case, F (x) =
∫ x

−∞ f (y)dy , so that

F is a continuous function and F ′(x) = f (x) (exercise).

In both cases, the cdf satisfies

1. F (−∞) = 0 and F (∞) = 1.

2. F is non-decreasing.

3. F is right-continuous.



Examples

If X ∼ Unif(a,b), with a,b ∈ R (a < b):

F (x) =







0 if x ≤ a
x−a
b−a

if x ∈ (a,b)

1 otherwise.

If X ∼ Exp(λ),

F (x) =

{

1 − exp(−λx) if x ≥ 0

0 otherwise.
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