
Stochastic Models (Lecture #2)

Thomas Verdebout

Université libre de Bruxelles (ULB)



Summary

In the first lecture, we learned about the concepts of

◮ random experiments,

◮ probability measures, and

◮ random variables.

We also

◮ defined the distribution of a rv and

◮ considered two main types of distributions

(discrete and absolutely continuous).



Outline of the course

1. A short introduction.

2. Basic probability review.

3. Martingales.

4. Markov chains.

5. Markov processes, Poisson processes.

6. Brownian motions.



Today

Today, our goal is

◮ to define integration of rv,

◮ to define the usual moments/parameters that summarize

the distribution of a rv,

and

◮ to consider random vectors,

◮ to define the concept of conditional probability.



Integration, moments, and parameters

Let X be a rv on the probability space (Ω,A,P).

We know the distribution of X is characterized by (e.g.) its cdf

F . But this is quite complicated, and we wonder whether it

could be possible to summarize this distribution by one (or

several) well chosen number(s)...

If one had to use a single number, what should it be?

How to define a quantity that would best represent the

“most typical value" of X?

A weighted average (involving weights from the probability

distribution of X ) seems to be a good choice...

❀ the expectation of X : E[X ] =

∫

Ω
X (ω)dP(ω).

How to define this integral ?



Integration, moments and parameters

Our plan is the following:

◮ defining (rigorously) E[X ] =
∫

Ω X (ω)dP(ω),

◮ studying how to compute such quantities in practice (both

for discrete and absolutely continuous rv’s.), and

◮ defining the standard parameters (based on such

integrals) that are used to summarize distributions.



Rigorous definition of
∫

Ω X dP

The definition proceeds in 3 steps.

A. Assume first that X is a step function, i.e., that

X =
∑n

i=1 ai IAi
(with ai ∈ R), where A1, . . . ,An ∈ A is a partition of Ω

(meaning that the Ai ’s are pairwise disjoint with ∪iAi = Ω).

In other words,

X (ω) =











a1 if ω ∈ A1
...

an if ω ∈ An.

Then, we define

E[X ] =

∫

Ω
X (ω)dP(ω) =

n
∑

i=1

aiP[Ai ].



Rigorous definition of
∫

Ω X dP

This is extended to any rv in the following way:

B. Assume that X ≥ 0. Then, we define

E[X ] =

∫

Ω
X (ω)dP(ω) = lim

n→∞

∫

Ω
Xn(ω)dP(ω),

where the Xn’s are step functions such that (Xn) ր X .

C. For a general X , we define

E[X ] =

∫

Ω
X (ω)dP(ω) =

∫

Ω
X+(ω)dP(ω)−

∫

Ω
X−(ω)dP(ω),

provided that both integrals are finite (we then say that X is

integrable).

Remark: if X is integrable, |X | = X+ + X− is also integrable.



Some properties of
∫

Ω X dP

◮ E[α1X1 + α2X2] = α1E[X1] + α2E[X2], for all α1, α2 ∈ R.

◮ |E[X ]| ≤ E[|X |].

◮ If X integrable, then P[A] = 0 ⇒
∫

A
X (ω)dP(ω) = 0 here,

∫

A
X (ω)dP(ω) :=

∫

Ω X (ω) IA(ω)dP(ω).
◮ If A1,A2, . . . ∈ A are pairwise disjoint,

∫

∪iAi
X (ω)dP(ω) =

∑

i

∫

Ai
X (ω)dP(ω).

◮ If Xn is integrable for all n and Xn ր X , then E[Xn] → E[X ]
(monotone convergence theorem).

◮ If |Xn| ≤ Y , where Y is integrable, and if

P[{ω |Xn(ω) → X (ω)}] = 1, then E[Xn] → E[X ]
(dominated convergence theorem).



Integration, moments, and parameters

Let X be an integrable rv on (Ω,A,P).

Assume that X is discrete, say with distribution

distribution of X

values x1 x2 . . .

probabilities p1 p2 . . .

Then

E[X ] =

∫

Ω
X (ω)dP(ω) =

∑

i

xipi .

Similarly, if g(X ) is an integrable rv,

E[g(X )] =

∫

Ω
g(X (ω))dP(ω) =

∑

i

g(xi)pi .



Integration, moments, and parameters

Let X be a R-valued and integrable rv on (Ω,A,P).

Assume that X is absolutely continuous, with pdf f , say.

Then

E[X ] =

∫

Ω
X (ω)dP(ω) =

∫

R

x f (x)dx .

Similarly, if g(X ) is an integrable rv,

E[g(X )] =

∫

Ω
g(X (ω))dP(ω) =

∫

R

g(x) f (x)dx .



Integration, moments, and parameters

Before considering some examples... our plan is defining the

standard parameters (based on such integrals) that are used to

summarize distributions.



Integration, moments, and parameters

Let X be an integrable rv on (Ω,A,P).

The expectation (the “mean value") of X is µX := E[X ].
This is a measure of location.

The variance of X is σ2
X = Var[X ] := E[(X − µX )

2] (if

E[X 2] < ∞). This is a measure of dispersion.

Remark: E[(X − µX )
2] = E[X 2 − 2µX X + µ2

X ] = E[X 2]− µ2
X

The standard deviation of X is σX =
√

Var[X ]
(advantage over the variance: it has the same unit as X itself).

These quantities try to summarize the distribution of X .

But of course, much information is lost...



Integration, moments, and parameters

More generally, one defines

◮ The moment of order k of X as E[X k ].

◮ The absolute moment of order k of X as E[|X |k ].
◮ The centered moment of order k of X as E[(X − µX )

k ].

Remarks:

◮ Assumptions of finite moments...

◮ If E[|X |k ] < ∞ (for some k > 0), then E[|X |j ] < ∞ for all

j ≤ k (if particular, Var[X ] < ∞ ⇒ E[|X |] < ∞).

It is time for examples...



Integration, moments, and parameters

Example (discrete):

assume you bet b euros on “even" in one game of roulette...

E : roulette, Ω = {0,1,2, . . . ,36}, A = P(Ω), P[A] = #A
#Ω .

Your (random) gain X is given by

X (ω) =

{

−b if ω ∈ {0,1,3, . . . ,35}
b if ω ∈ {2,4, . . . ,36},

whose distribution is

distribution of X

values −b b

probabilities 19
37

18
37



Integration, moments, and parameters

Therefore,

your expected winning is

E[X ] =
∑

i

xipi = (−b)× 19

37
+ b × 18

37
=

−b

37
.

Similarly,

E[X 2] =
∑

i

(xi)
2pi = (−b)2 × 19

37
+ b2 × 18

37
= b2

so that

Var[X ] = E[X 2]− (E[X ])2 = b2 −
(−b

37

)2
=

(

1 − 1

372

)

b2.



Integration, moments, and parameters

Exercises: check that

◮ if X ∼ Bern(p),

E[X ] = p and Var[X ] = p(1 − p);

◮ if X ∼ Bin(n,p),

E[X ] = np and Var[X ] = np(1 − p);

◮ if X ∼ P(λ),

E[X ] = λ and Var[X ] = λ.



Integration, moments, and parameters

Example (absolutely continuous):

assume that X ∼ Unif(a,b), i.e., that X has the pdf

f (x) =

{

1
b−a if x ∈ (a,b)

0 otherwise.

Then

E[X ] =

∫

R

x f (x)dx =

∫ b

a

x
1

b − a
dx =

1

b − a

[x2

2

]b

a
=

a + b

2
.

Similarly (exercise),

E[X 2] =

∫

R

x2 f (x)dx =

∫ b

a

x2 1

b − a
dx = . . . =

a2 + ab + b2

3
,

so that Var[X ] = E[X 2]− (E[X ])2 = . . . =
(b − a)2

12
.



Integration, moments, and parameters

Exercises: check that

◮ if X ∼ Exp(λ),

E[X ] =
1

λ
and Var[X ] =

1

λ2
;

◮ if X ∼ N (µ, σ2),

E[X ] = µ and Var[X ] = σ2.



Random vectors

A further step towards sp ...

So far we have considered a single rv

❀ Here we will consider jointly several rv X1, . . . ,Xk ,

collected in a so-called random vector (rv!!!)

X =







X1
...

Xk






.

Remarks:

◮ Below, we will only treat the case k = 2;

◮ however, the extension to the general case is trivial.



Random vectors

Consider again a probability space (Ω,A,P). Formally,

A bivariate (i.e., k = 2) random vector X is a mapping

X : Ω → R
2

ω 7→ X (ω) =

(

X1(ω)
X2(ω)

)

,

which satisfies X−1(B) = {ω ∈ Ω |X (ω) ∈ B} ∈ A, for all B ∈ B2. (∗)

Remarks:

◮ (*) is still referred as the measurability property.

◮ (*) still allows for speaking of P[X ∈ B] for all B ∈ B2.

◮ In (*), B2 denotes the two-dimensional Borel σ-algebra,

that is,

σ
(

{

(a1,b1]× (a2,b2],a1 < b1,a2 < b2

}

)

.



Random vectors

Terminology: X1 and X2 are the marginals of X . They are rv.

The distribution of X is the probability measure PX defined on

the measurable space (R2,B2) by

PX [B] := P[X ∈ B], B ∈ B2.

❀ Again, there are “essentially" two types of multivariate

distributions: discrete ones and absolutely continuous ones.



Random vectors (discrete case)

The distribution PX of X is discrete if there exists a (finite or

infinite) sequence

xi =

(

(xi )1

(xi )2

)

, i = 1,2, ...

of real couples such that

PX [B] =
∑

i | xi∈B

P [X = xi ] .

Again, such a distribution is characterized by the (vector) values xi

that X can assume along with the corresponding

probabilities pi .

distribution of X

(vector) values x1 x2 . . .

probabilities p1 p2 . . .



Random vectors (discrete case)

If each marginal is integrable, one can obtain the expectation of

X componentwise:

E[X ] =
∑

i

xipi =
∑

i

(

(xi)1

(xi)2

)

pi =

(

E[X1]
E[X2]

)

If g : R2 → R is such that g(X ) is an integrable random

variable, we have

E[g(X )] =
∑

i

g(xi)pi .



Random vectors (abs. continuous case)

The distribution PX of X is absolutely continuous if, for all

B ∈ B2 such that m2[B] = 0, we have PX [B] = 0.

It can be shown (Radon-Nikodym theorem) that, for such X ,

there exists a so-called probability density function (pdf)

f : R2 → R such that, for all B ∈ B2,

PX [B] =

∫

B

f (x)dx .

Properties of a pdf: f (x) ≥ 0 and
∫

R2 f (x)dx = 1.

distribution of X

(vector) values x

pdf f (x)



Random vectors (abs. continuous case)

If each marginal is integrable, one can obtain the expectation of

X componentwise:

E[X ] =

∫

R2

x f (x)dx =

∫

R2

(

x1

x2

)

f (x)dx =

(

E[X1]
E[X2]

)

If g : R2 → R is such that g(X ) is an integrable random

variable, we have

E[g(X )] =

∫

R2

g(x) f (x)dx .



Random vectors

In both cases, one can define the cumulative distribution

function (cdf) F by

F (x) = P[X1 ≤ x1,X2 ≤ x2].

◮ The marginal distribution of X1 is obtained via

limx2→∞ P[X1 ≤ x1,X2 ≤ x2].
◮ If X = (X1,X2) has density f (X1,X2)(x , y) then the marginal

density of X1 is

f X1(x) =

∫

R

f (X1,X2)(x , y)dy .

◮ If X is discrete and takes values (xi , yi ) with probabilities

p(X1,X2)(xi , yi ), then the marginal law of X1 is

pX1(xi ) =
∑

k

p(X1,X2)(xi , yk ).



Random vectors

A concept that is specific to the multivariate case is the

covariance between two rv

Cov[X1,X2] = E[(X1 − µX1
)(X2 − µX2

)]

(interpretation).

Properties:

◮ Cov[X1,X2] = Cov[X2,X1].

◮ Cov[X1,X2] = E[X1X2]− µX1
µX2

.

(as for the variance: bad for interpretation, good for

computations). (Exercise).

◮ |Cov[X1,X2]| ≤
√

Var[X1]
√

Var[X2] (from Cauchy-Schwarz).

Hence, the correlation ρ = Corr[X1,X2] :=
Cov[X1,X2]√

Var[X1]
√

Var[X2]

satisfies −1 ≤ ρ ≤ 1.



Random vectors

In the general case (k-variate case), the location and

dispersion parameters of some random vector

X =







X1
...

Xk







are collected in the mean vector

E[X ] =







E[X1]
...

E[Xk ]









Random vectors

and in the variance-covariance matrix

Var[X ] =
(

Cov[Xi ,Xj ]
)

i ,j=1,...,k

=







Var[X1] . . . Cov[X1,Xk ]
...

. . .
...

Cov[X1,Xk ] . . . Var[Xk ]






,

respectively.



Conditional probability

E : dice, Ω = {1,2, . . . ,6}, A = P(Ω), P[A] = #A
#Ω .

Consider the events A = {6} and B = {4,5,6}.

Assume that you know that B occurred.

What is then the probability that A occurs?

❀ we will write P[A|B] = 1
3
.

Before defining P[A|B], let us consider another example...



Conditional probability

E : dice, Ω = {1,2, . . . ,6}, A = P(Ω), P[A] = #A
#Ω .

Consider the events A =“obtain an even result" and

B = {4,5,6}.

What would be the value of P[A|B] here?

(discussion). ❀ P[A|B] = 2
3 = #(A∩B)

#B = P[A∩B]
P[B] .

This leads to the following definition:

Let (Ω,A,P) be a probability space. Let A,B ∈ A, with

P[B] 6= 0.

❀ We then define P[A|B] = P[A∩B]
P[B] . (remark: P[A|Ω] = P[A]).



Conditional probability

Two important formulas:

(A) The total probability formula.

(B) The Bayes formula.



Conditional probability

Two important formulas:

(A) The total probability formula:

Let (Ω,A,P) be a probability space.

Let A ∈ A. Let B1,B2, . . . ,Bn ∈ A, such that {B1,B2, . . . ,Bn} is

a partition of Ω with P[Bi ] 6= 0 for all i .

Then P[A] =
∑n

i=1 P[A|Bi ]P[Bi ] (proof).

Example:

3 types of machines in a factory (M1,M2,M3). Out of 100

machines, there are 50 M1, 30 M2, and 20 M3. Products made

with M1,M2,M3 are “good" with probability 0.7,0.8,0.9,

respectively. Then the probability that some product is good is

P[good] = P[good|M1]P[M1] + P[good|M2]P[M2] + P[good|M3]P[M3]
= 0.7 × 50

100
+ 0.8 × 30

100
+ 0.9 × 20

100
= 0.77.



Conditional probability

(B) The Bayes formula:

Let (Ω,A,P) be a probability space.

Let A ∈ A, with P[A] 6= 0. Let B1,B2, . . . ,Bn ∈ A, such that

{B1,B2, . . . ,Bn} is a partition of Ω with P[Bi ] 6= 0 for all i .

Then

P[Bj |A] =
P[A|Bj ]P[Bj ]

∑n
i=1 P[A|Bi ]P[Bi ]

(proof).

Example:

In the same factory as above, the probability that some good

product was made by M1 is

P[M1|good] =
P[good|M1]P[M1]

P[good|M1]P[M1] + P[good|M2]P[M2] + P[good|M3]P[M3]

=
0.7× 50

100

0.7× 50
100

+0.8× 30
100

+0.9× 20
100

≈ 0.45.



Conditional probability

Very important example: assume a drug test returns "+" if drug

was taken in 99% of time and "-" if drug was not taken in 99% of

time. Is this test reliable? IT DEPENDS!!

Assume on 0.5% of people take the drug. If test says yes, what

is actual probability the person took the drug?

P(D|+) =
P(+|D)P(D)

P(+|D)P(D) + P(+|Dc)P(Dc)

=
0.99 × 0.005

0.99 × 0.005 + 0.01 × 0.995
= 0.33.


