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Independence

We would like to develop a concept of independence.

Intuitively, A and B are independent (notation: A ⊥⊥ B) if

P[A|B] = P[A],

or, equivalently, if

P[A]P[B] = P[A|B]P[B] =
P[A ∩ B]

P[B]
P[B] = P[A ∩ B].

As a definition, we will say that

A and B are independent (A ⊥⊥ B) ⇔ P[A ∩ B] = P[A]P[B].

(since this also covers the cases where P[B] = 0).



Independence

Examples:

E : dice, Ω = {1,2, . . . ,6}, A = P(Ω), P[A] = #A
#Ω .

◮ Are A = {6} and B = {4,5,6} independent?

No, since

1

6
×

1

2
= P[A]× P[B] 6= P[A ∩ B] =

1

6
.

◮ Are A ="obtain an even result" and B = {4,5,6}
independent?

No, since

1

2
×

1

2
= P[A]× P[B] 6= P[A ∩ B] =

2

3
.



Independence

Another example:

E : 2 dices, Ω = {(1,1), (1,2), . . . , (6,6)}, A = P(Ω), P[A] = #A
#Ω .

◮ Are A ="obtain an even result for dice 1" and B ="obtain

an even result for dice 2" independent? Yes, since

P[A]P[B] =
18

36
×

18

36
=

9

36
= P[A ∩ B].

◮ Are A ="obtain an even result for dice 1" and C ="obtain

an odd sum" independent? Yes, since

P[A]P[C] =
18

36
×

18

36
=

9

36
= P[A ∩ C].

◮ Are B ="obtain an even result for dice 2" and C ="obtain

an odd sum" independent? Yes, since

P[B]P[C] =
18

36
×

18

36
=

9

36
= P[B ∩ C].



Independence

In this example, A,B,C are pairwise independent.

But

P[A]P[B]P[C] =
1

2
×

1

2
×

1

2
6= 0 = P[A ∩ B ∩ C].

We will say that A,B,C are not mutually independent...

Definition: The events A1,A2, . . .An are (mutually) independent

if and only if for all k , for all 1 ≤ i1 < i2 < . . . < ik ≤ n, we have

P[Ai1 ∩ Ai2 ∩ . . . ∩ Aik ] = P[Ai1]× P[Ai2]× . . .× P[Aik ].

It is clear that the above example violates this definition for

k = 3. Good, since, intuitively, we didn’t want to claim that

those 3 events are independent.



Independence

Let X1,X2, . . . be r.v.’s on (Ω,A,P).

◮ X1 ⊥⊥ X2
def
⇔ ∀B1,B2 ∈ B, [X1 ∈ B1] and [X2 ∈ B2] are ⊥⊥ .

(⇔ ∀B1,B2, P[X1 ∈ B1,X2 ∈ B2] = P[X1 ∈ B1]P[X2 ∈ B2]).

◮ X1, . . . ,Xn are ⊥⊥
def
⇔ ∀B1, . . . ,Bn ∈ B,

[X1 ∈ B1], . . . , [Xn ∈ Bn] are ⊥⊥ .

◮ X1,X2, . . . are ⊥⊥
def
⇔ for every n ≥ 2,X1,X2, . . . ,Xn are ⊥⊥ .

X1, . . . ,Xn are ⊥⊥ ⇔

◮ F X (x1, . . . , xn) =
∏n

i=1 FXi
(xi),

◮ f X (x1, . . . , xn) = f X1(x1) . . . f
Xn(xn) (provided existence...)



Independence

If X1, . . . ,Xn are ⊥⊥ , E[X1 . . .Xn] = E[X1] . . .E[Xn].

Corollary: X ⊥⊥ Y ⇒ Cov[X ,Y ] = 0.

Proof: X ⊥⊥ Y ⇒ (X − E[X ]) ⊥⊥ (Y − E[Y ]), so that Cov[X ,Y ] =
E[(X − E[X ])(Y − E[Y ])] = E[X − E[X ]]E[Y − E[Y ]] = 0.

Therefore, Cov[X ,Y ] can be considered as a measure of

dependence between X and Y .

Remarks:

◮ Cov[X ,Y ] = 0 does not imply that X ⊥⊥ Y .

Example: X , with pdf f (.), symmetric about 0, and Y = X 2.

◮ Var[X + Y ] = Var[X ] + Var[Y ] + 2 Cov[X ,Y ], so that

Var[X + Y ] = Var[X ] + Var[Y ] if X ⊥⊥ Y .



Independence

Independence can be extended to σ-algebras:

Let A1,A2, . . . ⊂ A be σ-algebras.

◮ A1 ⊥⊥ A2
def
⇔ ∀A1 ∈ A1, ∀A2 ∈ A2, A1 ⊥⊥ A2.

◮ A1, . . . ,An are ⊥⊥
def
⇔ ∀A1 ∈ A1, . . . ,∀An ∈ An, A1, . . . ,An

are ⊥⊥ .

◮ A1,A2, . . . are ⊥⊥
def
⇔ for every n ≥ 2,A1,A2, . . . ,An are ⊥⊥ .



Independence

Denote by

σ(X )
def
= X−1(B)

the σ-algebra generated by the r.v. X . (See Lecture # 1.)

◮ Then X1 ⊥⊥ X2 ⇔ σ(X1) ⊥⊥ σ(X2).

◮ This also allows for defining independence between r.v.

and σ-algebras:

X1, . . . ,Xn,A1, . . . ,An are ⊥⊥

m

σ(X1), . . . , σ(Xn),A1, . . . ,An are ⊥⊥ .



Conditional expectation

In the previous lecture, we studied how the concept of

expectation can be used to compute the "most typical value" or

"best guess" for some r.v. X .

Conditional expectation allows for exploiting some information

(e.g., the information that some event occurred) in order to

improve this (unconditional) best guess.

This information can take various forms:

◮ (the occurrence of) an event.

◮ (the value of ) a r.v.

◮ (the occurrence of some event in) a σ-algebra.



Conditional expectation (w.r.t. an event)

Let X be an integrable r.v. on (Ω,A,P).

Let A ∈ A, with P[A] 6= 0.

Then we let

E[X |A]
def
=

1

P[A]

∫

A

X (ω)dP(ω)

[

=

∫

Ω
X (ω)dP(ω|A)

]

.

Remarks:

◮ E[X |A] = 1
P[A]

∫

Ω X (ω)IA(ω)dP(ω). = E[XIA]
P[A] .

◮ E[X |Ω] = E[X ].
Intuitively, the information that Ω has occurred is void,

so that the "initial best guess" E[X ] cannot be improved.

◮ E[IA1
|A2] = P[A1|A2] (exercise) .

❀ Two examples...



Conditional expectation (w.r.t. an event)

(A) assume you bet b euros on "even" in one game of roulette...

E : roulette, Ω = {0,1,2, . . . ,36}, A = P(Ω), P[A] = #A
#Ω .

Your (random) gain X is given by

X (ω) =

{

−b if ω ∈ {0,1,3, . . . ,35}
b if ω ∈ {2,4, . . . ,36},

whose distribution is

distribution of X

values −b b

probabilities 19
37

18
37

with expected winning − b
37 .



Conditional expectation (w.r.t. an event)

(A) assume you bet b euros on "even" in one game of roulette...

E : roulette, Ω = {0,1,2, . . . ,36}, A = P(Ω), P[A] = #A
#Ω .

Now, we are given the information that the event A="result is not

0" occurred? What is then your expected winning, namely E[X |A]?

The r.v. X IA is determined by

(X IA)(ω) =







−b if ω ∈ {1,3, . . . ,35}
0 if ω = 0

b if ω ∈ {2,4, . . . ,36},

whose distribution is

distribution of XIA

values −b 0 b

probabilities 18
37

1
37

18
37



Conditional expectation (w.r.t. an event)

Therefore,

your expected winning (conditional upon A) is

E[X |A] =
1

P[A]
E[X IA] =

1

(36
37)

(

(−b)×
18

37
+0×

1

37
+b×

18

37

)

= 0.

The fact that we know 0 won’t be the result of the game,

transforms this defavorable game (E[X ] = −b/37) into a fair

one. E[X |A] = 0, i.e., the game is neither favorable nor

defavorable.



Conditional expectation (w.r.t. an event)

(B) assume that three coins (10, 20, and 50 cents) are tossed

and that you win the coins that show "head"...

E : 3 coins, Ω = {HHH,HHT , . . . ,TTT}, A = P(Ω), P[A] = #A
#Ω .

Denote by X your gain or loss.

Denote by A the event "two heads and one tail",

that is, A = {HHT ,HTH,THH}.

What is your conditional expected winning E[X |A]?

The r.v. X IA is determined by

(X IA)(ω) =















10 + 20 if ω = HHT

10 + 50 if ω = HTH

20 + 50 if ω = THH

0 if ω /∈ A.



Conditional expectation (w.r.t. an event)

The corresponding distribution is

distribution of XIA
values 30 60 70 0

probabilities 1
8

1
8

1
8

5
8

Therefore,

your expected winning (conditional upon A) is

E[X |A] =
E[X IA]

P[A]
=

1

(3
8)

(

30×
1

8
+

60

8
+

70

8
+0×

5

8

)

= 53.33 . . .

This is to be compared with (exercise) the unconditional

expected winning E[X ] = 40 (interpretation).



Conditional expectation

Conditional expectation allows for exploiting some information

(e.g., the information that some event occurred) in order to

improve the (unconditional) best guess E[X ].

This available information can take various forms:

◮ (the occurrence of) an event.

◮ (the value of ) a r.v.

◮ (the occurrence of some event in) a σ-algebra.



Conditional expectation (w.r.t. a r.v.)

Let X be an integrable r.v. on (Ω,A,P).

Let Y be a discrete r.v. on (Ω,A,P), say with distribution

distribution of Y

values y1 y2 . . .

probabilities p1 p2 . . .

Y partitions Ω via

Ω = {ω|Y (ω) = y1} ∪ {ω|Y (ω) = y2} ∪ · · ·

Then we define E[X |Y ] as the r.v.

E[X |Y ](ω′) = E [X |{ω|Y (ω) = yi}] if ω′ ∈ {ω|Y (ω) = yi}.

The last conditional expectation is w.r.t. an event, and hence is

well defined.



Conditional expectation

Note: we can interpret E[X |Y ] as a function of ω or as a

function of y :

E [X |Y ](ω) or E [X |Y = y ].

It can be shown that:

Theorem:

(i) E[X |Y ] is σ(Y )-measurable [that is: E[X |Y ] = f (Y )]
(ii)

∫

A
E[X |Y ](ω)dP(ω) =

∫

A
X (ω)dP(ω), for all A ∈ σ(Y ).

Actually, this characterizes the r.v. E[X |Y ].

This will be used to extend the concept of conditional

expectation to more general setups...



Conditional expectation

Some remarks:

◮ If a r.v. Z is σ(Y )–measurable, then this means that

Z = f (Y ) for some (measurable) function f .

◮ If E [X 2] is finite, then an alternative way to define E [X |Y ]
is this one:

E [X |Y ] = f0(Y ), with f0 is the function which minimizes the

mean squared loss:

E [X−f0(Y )]2 ≤ E [X−f (Y )]2, ∀f such that E [f (Y )]2 < ∞.

We perform a non-linear regression!



Conditional expectation (w.r.t. a r.v.)

Let X be an integrable r.v. on (Ω,A,P).

Then we define quite generally E[X |Y ] as the r.v. such that

(i) E[X |Y ] is σ(Y )-measurable.

(ii)
∫

A
E[X |Y ](ω)dP(ω) =

∫

A
X (ω)dP(ω), for all A ∈ σ(Y ).

In practice:

◮ If (X ,Y ) is discrete, E[X |Y = y ] =
∑

i xiP[X = xi |Y = y ].

◮ If (X ,Y ) is absolutely continuous,

E[X |Y = y ] =
1

f Y (y)

∫

R

x f (X ,Y )(x , y)dx =

∫

R

x f (X |Y )(x , y)dx ,

where f (X |Y )(x , y) denotes the pdf of X conditionally on Y = y .



Conditional expectation (w.r.t. a r.v.)

Same properties:

◮ E[X |Y ] is σ(Y )-measurable

◮ E[X |Y ] = E[X ] iff X ⊥⊥ Y .

◮ E[X |Y ] = X iff X is σ(Y )-measurable.

◮ E

[

E[X |Y ]
]

= E[X ].

Remark: E[X ] = E

[

E[X |Y ]
]

=
∫

R
E[X |Y = y ] f Y (y)dy .

(// total probability formula).

We still define: P[A|Y ] = E[IA|Y ]].

❀ P[A] = E[IA] = E

[

E[IA|Y ]
]

=
∫

R
E[IA|Y = y ] f Y (y)dy =

∫

R
P[A|Y = y ] f Y (y)dy .



Conditional variances

In time series analysis, many models are designed to explain

the dynamics of the conditional variance Var[Xt |Xt−1,Xt−2, . . .]
(e.g., the so-called stochastic volatility models). We define

Var[X |Y ] = E [(X − E [X |Y ])2|Y ].

Remarks:

◮ Similarly (exercise) as for Var[X ],

Var[X |Y ] = E[X 2|Y ]−
(

E[X |Y ]
)2
.

◮ But Var[X ] 6= E[Var[X |Y ]], rather (exercise) we have

Var[X ] = E
[

Var[X |Y ]
]

+ Var
[

E[X |Y ]
]

.



Conditional expectation (w.r.t. a r.v.)

Example:

Let X ∼ Unif(0,1). If X = x , you flip m times a coin with

property P[Head] = x . Let N be the number of "heads".

E[N] =? Distribution of N?

E[N|X = x ] =

m
∑

n=0

nP[N = n|X = x ] =

m
∑

n=0

n

(

m

n

)

xn(1 − x)m−n

= mx expectation of a Binomial random variable.

⇒ E[N|X ] = mX (σ(X )-measurable).

Consequently, E[N] = E

[

E[N|X ]
]

= E[mX ] = mE[X ] = m
2 .



Conditional expectation (w.r.t. a r.v.)

Distribution of N?

P[N = n] =

∫

R

P[N = n|X = x ] f X (x)dx =

∫ 1

0

P[N = n|X = x ]dx

=

∫ 1

0

(

m

n

)

xn(1 − x)m−n dx =

(

m

n

)
∫ 1

0

xn(1 − x)m−n dx

= . . . =
1

m + 1
,

for all n = 0,1, . . . ,m.

Hence, N is uniformly distributed on {0,1, . . . ,m}.

(which now makes clear why E[N] = m
2 ).



Conditional expectation (w.r.t. a r.v.)

Example:

A hen lays N eggs, where N ∼ P(λ). Each egg hatches out

with probability p. Let K be number of born chicken.

E[K |N] =? and E[K ] =?.

E[K |N](ω) = E[K |N = n] if N(ω) = n, where

E[K |N = n] =
∑

k

kP[K = k |N = n] =

n
∑

k=0

k

(

n

k

)

pkqn−k

= np expectation of a Binomial r.v.

⇒ E[K |N] = Np (σ(N)-measurable).

Consequently, E[K ] = E

[

E[K |N]
]

= E[Np] = pE[N] = pλ.



Conditional expectation (w.r.t. a r.v.)

Example:

Let X ∼ Exp(λ1) and Y ∼ Exp(λ2) be two independent

exponential random variables. What is the distribution of

V = X + Y ?

We use total probability formula and assume z ≥ 0. (The case

z < 0 is trivial.)

P[V ≤ z] =

∫

R

P[V ≤ z|Y = y ]f Y (y)dy

=

∫

R

P[X + Y ≤ z|Y = y ]f Y (y)dy

=

∫

R

P[X ≤ z − y ]f Y (y)dy

=

∫

R

(1 − e−λ1(z−y))I[z − y ≥ 0]λ2e−λ2y
I[y ≥ 0]dy

=

∫ z

0

(1 − e−λ1(z−y))λ2e−λ2ydy = · · ·



Conditional expectation

Conditional expectation allows for exploiting some information

(e.g., the information that some event occurred) in order to

improve the (unconditional) best guess E[X ].

This available information can take various forms:

◮ (the occurrence of) an event.

◮ (the value of ) a r.v.

◮ (the occurrence of some event in) a σ-algebra.



Conditional expectation (w.r.t. a σ-algebra)

Let X be an integrable r.v. on (Ω,A,P).

Let F be a σ-algebra ⊂ A.

Then we define E[X |F ] as the r.v. such that

(i) E[X |F ] is F-measurable.

(ii)
∫

A
E[X |F ](ω)dP(ω) =

∫

A
X (ω)dP(ω), for all A ∈ F .

Same kind of properties as for E[X |Y ]:

◮ E[X |F ] is F-measurable

◮ E[X |F ] = E[X ] iff X ⊥⊥ F .

◮ E[X |F ] = X iff X is F-measurable.

◮ E

[

E[X |F ]
]

= E[X ].



Conditional expectation (w.r.t. a σ-algebra)

Let F1 ⊂ F2 be two σ-algebras in A.

Extra properties:

◮ E

[

E[X |F2]
∣

∣F1

]

= E[X |F1].

◮ E

[

E[X |F1]
∣

∣F2

]

= E[X |F1].

Conditional expectation w.r.t. to a σ-algebra also allows for

defining conditional expectation w.r.t. a collection of r.v.’s.

More specifically, we define

E[X |Y1, . . . ,Yn] := E[X |σ(Y1, . . . ,Yn)],

where σ(Y1, . . . ,Yn) is the smallest σ-algebra containing

{Y−1
i (B) |B ∈ B, i = 1, . . . ,n}.


