Stochastic Models (Lecture #4)

Thomas Verdebout

Université libre de Bruxelles (ULB)

Today

Today, our goal will be

- to discuss limits of sequences of rv, and
- to study famous limiting results.

Let X_1, X_2, \ldots be i.i.d. rv, that is, rv that are independent and identically distributed. Assume X_1 is square-integrable, and write $\mu := \mathbb{E}[X_1]$ and $\sigma^2 := \operatorname{Var}[X_1]$.

Let
$$\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i$$
. Then
• $\mathbb{E}[\overline{X}_n] = \frac{1}{n} \sum_{i=1}^n \mathbb{E}[X_i] = \mathbb{E}[X_1] = \mu$, and
• $\operatorname{Var}[\overline{X}_n] = \frac{1}{n^2} \operatorname{Var}[\sum_{i=1}^n X_i] = \frac{1}{n^2} \sum_{i=1}^n \operatorname{Var}[X_i] = \frac{1}{n} \operatorname{Var}[X_1] = \frac{\sigma^2}{n}$, which converges to 0 as $n \to \infty$.

Consequently, we feel intuitively that $\overline{X}_n \to X$, where $X = \mu$.

How to make this convergence precise?

Consider a sequence of r.v.'s (X_n) and a r.v. X, defined on ($\Omega, \mathcal{A}, \mathbb{P}$).

How to define $X_n \to X$ (as $n \to \infty$)?

 $X_n \stackrel{a.s.}{\to} X$ (almost surely) $\Leftrightarrow \mathbb{P}[\limsup_n |X_n - X| = 0] = 1.$

 $X_n \xrightarrow{P} X$ (in probability) $\Leftrightarrow \lim_n \mathbb{P}[|X_n - X| > \varepsilon] = 0, \forall \varepsilon > 0.$

$$X_n \stackrel{L'}{\to} X$$
 (in L^r , $r > 0$) $\Leftrightarrow \mathbb{E}[|X_n - X|^r] \to 0$.

 $X_n \xrightarrow{\mathcal{D}} X$ in distribution (or in law) $\Leftrightarrow F^{X_n}(x) \to F^X(x)$ for all x at which F^X is continuous.

Consider as example $(\Omega, \mathcal{A}, \mathbb{P}) = ([0, 1], \mathcal{B}, \lambda).$

 $X_n \stackrel{a.s.}{\rightarrow} X$: pointwise convergence (modulo null set).

 $X_n \xrightarrow{P} X$: convergence in measure.

$$X_n \stackrel{L^r}{
ightarrow} X: \quad \int_0^1 |X_n(t) - X(t)|^r dt
ightarrow 0.$$

A principal question: What is the relation among those 4 types of convergence?

Lemma. (Markov inequality). If $E|Y|^r < \infty, r > 0$, then

$$\mathbb{P}[|Y| > \varepsilon] \le \frac{E|Y|^r}{\varepsilon^r}$$

With $Y = X - \mathbb{E}[X]$ and r = 2 this becomes Chebyshev's inequality:

$$\mathbb{P}[|X - \mathbb{E}[X]| > \varepsilon] \leq rac{\operatorname{Var}(X)}{\varepsilon^2}.$$

Proof. Since $|Y|^r \ge \varepsilon^r I\{|Y| > \varepsilon\}$, it follows that $\mathbb{E}|Y|^r \ge \varepsilon^r \mathbb{P}[|Y| > \varepsilon]$.

An easy consequence is that

$$X_n \xrightarrow{L^r} X$$
 implies $X_n \xrightarrow{P} X$.

The other direction is not true, we give a counter example. Example 1:

Let Y_1, Y_2, \ldots be i.i.d. rv, with common distribution

distribution of Y_i			
values	0	2	
probabilities	$\frac{1}{2}$	$\frac{1}{2}$	

Define
$$X_n = \prod_{i=1}^n Y_i$$
.

The distribution of X_n is

distribution of Xn			
values	0	2″	
probabilities	$1 - \frac{1}{2^n}$	$\frac{1}{2^{n}}$	

We feel that $X_n \rightarrow X$, where X = 0.

In probability:

For all
$$\varepsilon > 0$$
,
 $\mathbb{P}[|X_n - X| > \varepsilon] = \mathbb{P}[X_n > \varepsilon] \le \mathbb{P}[X_n > 0] = \frac{1}{2^n} \to 0$,
as $n \to \infty$.

$$\Rightarrow X_n \stackrel{P}{\rightarrow} X$$
, as $n \rightarrow \infty$.

In L^1 :

$$\mathbb{E}[|X_n - X|] = \mathbb{E}[X_n] = 0 \times \left(1 - \frac{1}{2^n}\right) + 2^n \times \frac{1}{2^n} = 1,$$
which does not go to zero, as $n \to \infty$.

 \Rightarrow the convergence does not hold in the L^1 sense.

One can further show that $X_n \xrightarrow{a.s.} X$ implies $X_n \xrightarrow{P} X$.

Again the other direction is not true:

Example 2:

 $(\Omega, \mathcal{A}, \mathbb{P}) = ([0, 1], \mathcal{B}((0, 1]), m)$ (where *m* is the Lebesgue measure). Further let

$$\begin{split} X_{1}(\omega) &= \mathbb{I}_{(0,1/2]}(\omega) \quad X_{2}(\omega) = \mathbb{I}_{(1/2,1]} \\ X_{3}(\omega) &= \mathbb{I}_{(0,1/4]} \quad X_{4}(\omega) = \mathbb{I}_{(1/4,2/4]} \cdots \\ X_{7}(\omega) &= \mathbb{I}_{(0,1/8]} \quad X_{8}(\omega) = \mathbb{I}_{(1/8,2/8]} \cdots \end{split}$$

For $k \in \{2^n - 1, 2^n, \dots, 2^{n+1} - 2\}$ we have $\mathbb{P}(|X_k - 0| > 0) = 2^{-n}.$

BUT $\mathbb{P}(\limsup_k |X_k - 0| = 0) = 0.$

Thus we have for the moment

$$X_n \stackrel{a.s.}{\to} X \stackrel{\longrightarrow}{\not=} X_n \stackrel{P}{\to} X \stackrel{\longleftarrow}{\Rightarrow} X_n \stackrel{L'}{\to} X$$

Assume $X_n \xrightarrow{P} X$. We wish to prove that then $X_n \xrightarrow{\mathcal{D}} X$.

For the following argument we use (exercise)

 $\mathbb{P}(A) - \mathbb{P}(B) \leq \mathbb{P}(A \cap B^c).$

Set $A = [X \le x - \varepsilon]$ and $B = [|X_n - X| \ge \varepsilon]$. Then we have

$$A \cap B^c = [X \leq x - \varepsilon] \cap [|X_n - X| < \varepsilon] \subset [X_n \leq x].$$

Thus

 $\mathbb{P}[X \leq x - \varepsilon] - \mathbb{P}[|X_n - X| \geq \varepsilon] \leq \mathbb{P}[X_n \leq x].$

A similar argument (exercise) shows that

 $\mathbb{P}[X_n \leq x] \leq \mathbb{P}[|X_n - X| \geq \varepsilon] + \mathbb{P}[X \leq x + \varepsilon].$

By the previous inequalities we infer that for any $\varepsilon > 0$

$$F^{X}(x-\varepsilon) = \mathbb{P}[X \le x-\varepsilon]$$

$$\leq \liminf_{n} \mathbb{P}[X_{n} \le x]$$

$$\leq \limsup_{n} \mathbb{P}[X_{n} \le x]$$

$$\leq \mathbb{P}[X \le x+\varepsilon] = F^{X}(x+\varepsilon).$$

Now let ε tend to zero and use that F^X is continuous in x. Hence $X_n \xrightarrow{P} X$ implies $X_n \xrightarrow{D} X$.

Thus we have

$$\begin{array}{cccc} X_n \stackrel{a.s.}{\to} X & \stackrel{\longrightarrow}{\not=} & X_n \stackrel{P}{\to} X & \stackrel{\longleftarrow}{\Rightarrow} X_n \stackrel{L'}{\to} X \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & &$$

A useful criterion:

Lemma (Borel-Cantelli-Lemma). If $\sum_{k\geq 1} \mathbb{P}(|X_k - X| > \varepsilon) < \infty$ holds for any $\varepsilon > 0$, then

$$X_k \stackrel{a.s.}{
ightarrow} X$$
 .

Hence in Example 1, $X_n \stackrel{a.s.}{\rightarrow} X$.

Also, if $\mathbb{P}(|X_n - X| > \varepsilon) \to 0$, then there is a subsequence $\{n_k\}$ such that

$$\sum_{k\geq 1}\mathbb{P}(|X_{n_k}-X|>\varepsilon)<\infty.$$

Hence $X_n \xrightarrow{P} X$ implies $X_{n_k} \xrightarrow{a.s.} X$ along some properly chosen subsequence.

The previous example shows that arrows can sometimes be reverted. Here some other sufficient conditions.

- $X_n \xrightarrow{P} X$ \Rightarrow there exists a subsequence (X_{n_k}) for which $X_{n_k} \xrightarrow{a.s.} X$.
- $X_n \xrightarrow{P} X$ and the X_n 's are uniformly integrable^{*}) $\Rightarrow X_n \xrightarrow{L^1} X$. • $X_n \xrightarrow{D} \text{const} \Rightarrow X_n \xrightarrow{P} \text{const}$.

*)Definition: the X_n 's are uniformly integrable $\Leftrightarrow \lim_{\alpha \to \infty} \sup_n \int_{\{|X_n| \ge \alpha\}} |X_n| \, dP = 0.$

The latter condition implies that $\sup_n \mathbb{E}[|X_n|] < \infty$, thus if this condition is violated, our sequence will not be uniformly integrable. (See Example 1).

Here are the two most famous limiting results in probability and statistics...

The law of large numbers (LLN):

Let X_1, X_2, \ldots be i.i.d. integrable rv. Write $\mu := \mathbb{E}[X_1]$.

Then

$$\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i \stackrel{a.s.}{\to} \mu.$$

Remark:

 Interpretation for favorable/fair/defavorable games of chance.

An example...

Let X_1, X_2, \ldots be i.i.d., with $X_i \sim \text{Bern}(p)$. Then $\mu = \mathbb{E}[X_i] = p$, so that

$$\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i \stackrel{a.s.}{\to} p.$$

Remark: If $Y_1, Y_2,...$ are i.i.d. and $X_i = I\{Y_i \le x\}$ then $\overline{X}_n = F_n(x)$ is called the *empirical distribution function*. Note that $EX_i = F^Y(x)$. We see that

$$F_n^Y(x) \stackrel{a.s.}{\to} F^Y(x).$$

This result holds uniformly in *x* and is called *Fundamental Theorem of Statistics.*

Let us prove the following weak law of large numbers: if X_1, X_2, X_3, \ldots are i.i.d. with $\mathbb{E}[X_1] = \mu$ and $\operatorname{Var}[X_n] = \sigma^2 < \infty$, then

$$\bar{X}_n := \frac{1}{n} \sum_{i=1}^n X_i \stackrel{P}{\to} \mu.$$

Proof. We have for any $\varepsilon > 0$:

$$\mathbb{P}[|\overline{X}_n - \mu| > \epsilon] \le \frac{\operatorname{Var}[\overline{X}_n]}{\varepsilon^2} \le \frac{\sigma^2}{n\varepsilon^2} \to 0 \quad (n \to \infty).$$

The central limit theorem (CLT):

Let X_1, X_2, \ldots be i.i.d. square-integrable rv. Write $\mu := \mathbb{E}[X_1]$ and $\sigma^2 := \operatorname{Var}[X_1]$.

Then

$$\frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \xrightarrow{\mathcal{D}} Z, \quad \text{ with } Z \sim \mathcal{N}(0, 1).$$

Remarks:

•
$$\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} = \frac{\bar{X}_n - \mathbb{E}[\bar{X}_n]}{\sqrt{\operatorname{Var}[\bar{X}_n]}} = \frac{S_n - \mathbb{E}[S_n]}{\sqrt{\operatorname{Var}[S_n]}}$$
, where $S_n = X_1 + \cdots + X_n$.

• It says sth about the speed of convergence in $\bar{X}_n \stackrel{a.s.}{\to} \mu$.

- ▶ It allows for computing $\mathbb{P}[\bar{X}_n \in B]$ for large *n*...
- It is valid whatever the distribution of the X_i's!

Two examples...

(A) Let X_1, X_2, \ldots be i.i.d., with $X_i \sim \text{Bern}(p)$. Then $\mu = \mathbb{E}[X_i] = p$ and $\sigma^2 = \text{Var}[X_i] = p(1-p)$, so that

$$\frac{\sqrt{n}(\bar{X}_n-p)}{\sqrt{p(1-p)}} \xrightarrow{\mathcal{D}} Z, \quad \text{with } Z \sim \mathcal{N}(0,1).$$

Application:

This allows for getting an approximation of $\mathbb{P}[\bar{X}_n \in B]$ for large n, by using that $\frac{\sqrt{n}(\bar{X}_n - p)}{\sqrt{p(1-p)}} \approx \mathcal{N}(0, 1)$ for large n.

(B) Let us assume that we play 30 games of roulette, each time we bet 1 Euro either on red or black. What is the probability that that in the end we made a gain?

Define $X_n = Y_1 + \ldots + Y_n$ where $Y_n = 1$ if we win, or -1 if we loose. Then X_n is the amount of money we won after *n* games. Here

$$\mathbb{E}[X_{30}] = 30 \times \mathbb{E}[Y_1] = -\frac{30}{37},$$

Var[X_{30}] = 30 × Var[Y_1] = 30(1 - (1/37)^2).

Hence

$$\begin{split} \mathbb{P}(X_{30} > 0) &= \mathbb{P}\left(X_{30} + \frac{30}{37} > \frac{30}{37}\right) \\ &= \mathbb{P}\left((X_{30} + \frac{30}{37})/\sqrt{30(1 - (1/37)^2)} > \frac{30}{37}/\sqrt{30(1 - (1/37)^2)}\right) \\ &\approx \mathbb{P}(\mathcal{N}(0, 1) > 0.15) = 1 - \Phi(0.15) \approx 0.44. \end{split}$$

This should be compared to 0.37 for the exact distribution.

The following table shows the normal approximation for the previous problem for sample sizes n = 30 * k, k = 1, ..., 10 and the corresponding exact probabilities.

k	approx	exact
[1,]	0.4411370	0.3701876
[2,]	0.4170575	0.3672352
[3,]	0.3987845	0.3584982
[4,]	0.3835484	0.3490209
[5,]	0.3702720	0.3397180
[6,]	0.3584003	0.3308089
[7,]	0.3476023	0.3223349
[8,]	0.3376615	0.3142836
[9,]	0.3284267	0.3066269
10,]	0.3197876	0.2993330

Sketch of the proof

Let us assume that X_1, X_2, \ldots are i.i.d.

Then we define $\varphi_X(t) := \mathbb{E} \exp(itX_1)$. This is the so-called *characteristic function* of X_1 . (By i.i.d. assumption all X_i have the same characteristic function.)

One can show:

- ► For random variables *X* and *Y*, if $\varphi_X(t) = \varphi_Y(t)$ then $X \stackrel{\text{D}}{=} Y$. (Uniqueness theorem)
- If φ_{X_n}(t) → φ_X(t) for all t, then X_n → X. (Continuity theorem)
- ▶ If *X* and *Y* are independent, then $\varphi_{X+Y}(t) = \varphi_X(t)\varphi_Y(t)$.

•
$$\varphi_{aX}(t) = \varphi_X(at).$$

 $\blacktriangleright \varphi_{X+\mu}(t) = e^{it\mu}\varphi_X(t).$

Sketch of the proof

By assumption
$$X_1, X_2, ...$$
 are i.i.d., it follows that for $Z_n = \frac{1}{\sigma\sqrt{n}}S_n$, where $S_n = (X_1 - \mu) + (X_2 - \mu) + ... + (X_n - \mu)$.

$$\begin{split} \varphi_{Z_n}(t) &= \varphi_{S_n}(t/(\sigma\sqrt{n})) \\ &= (\varphi_{X_1-\mu}(t/(\sigma\sqrt{n})))^n \\ &= \left(\mathbb{E}e^{it(X_1-\mu)/(\sigma\sqrt{n})}\right)^n \\ &\approx \left(\mathbb{E}\Big[\underbrace{1 + \frac{it}{\sigma\sqrt{n}}(X_1-\mu) - \frac{t^2}{2\sigma^2 n}(X_1-\mu)^2}_{2 \text{ term Taylor expansion}}\right]\Big)^n \\ &= \left(1 - \frac{t^2}{2n}\right)^n \\ &\to e^{-t^2/2} = \mathbb{E}e^{itZ}, \end{split}$$

where $Z \sim \mathcal{N}(0, 1)$.