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Today

Today, our goal will be

◮ to discuss limits of sequences of rv, and

◮ to study famous limiting results.



Convergence of sequences of rv

Let X1,X2, . . . be i.i.d. rv, that is, rv that are independent and

identically distributed. Assume X1 is square-integrable, and

write µ := E[X1] and σ2 := Var[X1].

Let X n := 1
n

∑n
i=1 Xi . Then

◮ E[X n] =
1
n

∑n
i=1 E[Xi ] = E[X1] = µ, and

◮ Var[X n] =
1
n2 Var[

∑n
i=1 Xi ] =

1
n2

∑n
i=1 Var[Xi ] =

1
n Var[X1] =

σ2

n ,which converges to 0 as n → ∞.

Consequently, we feel intuitively that X n → X , where X = µ.

How to make this convergence precise?



Convergence of sequences of r.v.’s

Consider a sequence of r.v.’s (Xn) and a r.v. X , defined on (Ω,A,P).

How to define Xn → X (as n → ∞)?

Xn
a.s.→ X (almost surely) ⇔ P[lim supn |Xn − X | = 0] = 1.

Xn
P→ X (in probability) ⇔ limn P[|Xn − X | > ε] = 0, ∀ε > 0.

Xn
Lr

→ X (in Lr , r > 0) ⇔ E[|Xn − X |r ] → 0.

Xn
D→ X in distribution (or in law) ⇔ F Xn(x) → F X (x) for all x at

which F X is continuous.



Convergence of sequences of r.v.’s

Consider as example (Ω,A,P) = ([0,1],B, λ).

Xn
a.s.→ X : pointwise convergence (modulo null set).

Xn
P→ X : convergence in measure.

Xn
Lr

→ X :
∫ 1

0
|Xn(t)− X (t)|r dt → 0.



Convergence of sequences of r.v.’s

A principal question: What is the relation among those 4 types

of convergence?



Convergence of sequences of r.v.’s

Lemma. (Markov inequality). If E |Y |r < ∞, r > 0, then

P[|Y | > ε] ≤ E |Y |r
εr

.

With Y = X − E[X ] and r = 2 this becomes Chebyshev’s

inequality:

P[|X − E[X ]| > ε] ≤ Var(X )

ε2
.

Proof. Since |Y |r ≥ εr I{|Y | > ε}, it follows that

E|Y |r ≥ εr
P[|Y | > ε].

An easy consequence is that

Xn
Lr

→ X implies Xn
P→ X .



Convergence of sequences of r.v.’s

The other direction is not true, we give a counter example.

Example 1:

Let Y1,Y2, . . . be i.i.d. rv, with common distribution

distribution of Yi
values 0 2

probabilities 1
2

1
2

Define Xn =
∏n

i=1 Yi .

The distribution of Xn is

distribution of Xn

values 0 2n

probabilities 1 −

1
2n

1
2n

We feel that Xn → X , where X = 0.



Convergence of sequences of rv

In probability:

For all ε > 0,

P[|Xn − X | > ε] = P[Xn > ε] ≤ P[Xn > 0] = 1
2n → 0,

as n → ∞.

⇒ Xn
P→ X , as n → ∞.

In L1:

E[|Xn − X |] = E[Xn] = 0 ×
(
1 − 1

2n

)
+ 2n × 1

2n = 1,

which does not go to zero, as n → ∞.

⇒ the convergence does not hold in the L1 sense.



Convergence of sequences of rv

One can further show that Xn
a.s.→ X implies Xn

P→ X .

Again the other direction is not true:

Example 2:

(Ω,A,P) = ([0,1],B((0,1]),m) (where m is the Lebesgue

measure). Further let

X1(ω) = I(0,1/2](ω) X2(ω) = I(1/2,1]

X3(ω) = I(0,1/4] X4(ω) = I(1/4,2/4] · · ·
X7(ω) = I(0,1/8] X8(ω) = I(1/8,2/8] · · ·

For k ∈ {2n − 1,2n, . . . ,2n+1 − 2} we have

P(|Xk − 0| > 0) = 2−n.

BUT P(lim supk |Xk − 0| = 0) = 0.



Convergence of sequences of rv

Thus we have for the moment

Xn
a.s.→ X

=⇒
6⇐ Xn

P→ X
⇐=
6⇒ Xn

Lr

→ X



Convergence of sequences of rv

Assume Xn
P→ X . We wish to prove that then Xn

D→ X .

For the following argument we use (exercise)

P(A)− P(B) ≤ P(A ∩ Bc).

Set A = [X ≤ x − ε] and B = [|Xn − X | ≥ ε]. Then we have

A ∩ Bc = [X ≤ x − ε] ∩ [|Xn − X | < ε] ⊂ [Xn ≤ x ].

Thus

P[X ≤ x − ε]− P[|Xn − X | ≥ ε] ≤ P[Xn ≤ x ].

A similar argument (exercise) shows that

P[Xn ≤ x ] ≤ P[|Xn − X | ≥ ε] + P[X ≤ x + ε].



Convergence of sequences of rv

By the previous inequalities we infer that for any ε > 0

F X (x − ε) = P[X ≤ x − ε]

≤ lim inf
n

P[Xn ≤ x ]

≤ lim sup
n

P[Xn ≤ x ]

≤ P[X ≤ x + ε] = F X (x + ε).

Now let ε tend to zero and use that F X is continuous in x .

Hence Xn
P→ X implies Xn

D→ X .



Convergence of sequences of rv

Thus we have

Xn
a.s.→ X

=⇒
6⇐ Xn

P→ X
⇐=
6⇒ Xn

Lr

→ X

⇓6⇑

Xn
D→ X



Convergence of sequences of rv

A useful criterion:

Lemma (Borel-Cantelli-Lemma). If
∑

k≥1 P(|Xk − X | > ε) < ∞
holds for any ε > 0, then

Xk
a.s.→ X .

Hence in Example 1, Xn
a.s.→ X .

Also, if P(|Xn − X | > ε) → 0, then there is a subsequence {nk}
such that ∑

k≥1

P(|Xnk
− X | > ε) < ∞.

Hence Xn
P→ X implies Xnk

a.s.→ X along some properly chosen

subsequence.



Convergence of sequences of rv

The previous example shows that arrows can sometimes be

reverted. Here some other sufficient conditions.

◮ Xn
P→ X ⇒ there exists a subsequence (Xnk

) for which

Xnk

a.s.→ X .

◮ Xn
P→ X and the Xn’s are uniformly integrable∗) ⇒ Xn

L1

→ X .

◮ Xn
D→ const ⇒ Xn

P→ const.

∗)Definition: the Xn’s are uniformly integrable ⇔
limα→∞ supn

∫

{|Xn|≥α} |Xn|dP = 0.

The latter condition implies that supn E[|Xn|] < ∞, thus if this

condition is violated, our sequence will not be uniformly

integrable. (See Example 1).



Limiting theorems

Here are the two most famous limiting results in probability and

statistics...



Limiting theorems

The law of large numbers (LLN):

Let X1,X2, . . . be i.i.d. integrable rv.

Write µ := E[X1].

Then

X n :=
1

n

n∑

i=1

Xi
a.s.→ µ.

Remark:

◮ Interpretation for favorable/fair/defavorable games of

chance.



Limiting theorems

An example...

Let X1,X2, . . . be i.i.d., with Xi ∼ Bern(p).
Then µ = E[Xi ] = p, so that

X n :=
1

n

n∑

i=1

Xi
a.s.→ p.

Remark: If Y1,Y2, . . . are i.i.d. and Xi = I{Yi ≤ x} then

X̄n = Fn(x) is called the empirical distribution function. Note

that EXi = F Y (x). We see that

F Y
n (x)

a.s.→ F Y (x).

This result holds uniformly in x and is called Fundamental

Theorem of Statistics.



Limiting theorems

Let us prove the following weak law of large numbers: if

X1,X2,X3, . . . are i.i.d. with E[X1] = µ and Var[Xn] = σ2 < ∞,

then

X̄n :=
1

n

n∑

i=1

Xi
P→ µ.

Proof. We have for any ε > 0:

P[|Xn − µ| > ǫ] ≤ Var[X n]

ε2

≤ σ2

nε2
→ 0 (n → ∞).



Limiting theorems

The central limit theorem (CLT):

Let X1,X2, . . . be i.i.d. square-integrable rv.

Write µ := E[X1] and σ2 := Var[X1].

Then
X n − µ

σ/
√

n

D→ Z , with Z ∼ N (0,1).

Remarks:

◮
X̄n−µ
σ/

√
n
= X̄n−E[X̄n]√

Var[X̄n]
= Sn−E[Sn]√

Var[Sn]
, where Sn = X1 + · · ·+ Xn.

◮ It says sth about the speed of convergence in X̄n
a.s.→ µ.

◮ It allows for computing P[X̄n ∈ B] for large n...

◮ It is valid whatever the distribution of the Xi ’s!



Limiting theorems

Two examples...

(A) Let X1,X2, . . . be i.i.d., with Xi ∼ Bern(p).
Then µ = E[Xi ] = p and σ2 = Var[Xi ] = p(1 − p), so that

√
n(X̄n − p)

√

p(1 − p)

D→ Z , with Z ∼ N (0,1).

Application:

This allows for getting an approximation of P[X̄n ∈ B] for large

n, by using that
√

n(X̄n−p)√
p(1−p)

≈ N (0,1) for large n.



Limiting theorems

(B) Let us assume that we play 30 games of roulette, each time

we bet 1 Euro either on red or black. What is the probability that

that in the end we made a gain?

Define Xn = Y1 + . . .+ Yn where Yn = 1 if we win, or −1 if we

loose. Then Xn is the amount of money we won after n games.

Here

E[X30] = 30 × E[Y1] = −30

37
,

Var[X30] = 30 × Var[Y1] = 30(1 − (1/37)2).

Hence

P(X30 > 0) = P

(

X30 +
30

37
>

30

37

)

= P

(

(X30 +
30

37
)/
√

30(1 − (1/37)2) >
30

37
/
√

30(1 − (1/37)2)

)

≈ P(N (0,1) > 0.15) = 1 − Φ(0.15) ≈ 0.44.



Limiting theorems

This should be compared to 0.37 for the exact distribution.

The following table shows the normal approximation for the

previous problem for sample sizes n = 30 ∗ k , k = 1, . . . ,10

and the corresponding exact probabilities.

k approx exact

[1,] 0.4411370 0.3701876

[2,] 0.4170575 0.3672352

[3,] 0.3987845 0.3584982

[4,] 0.3835484 0.3490209

[5,] 0.3702720 0.3397180

[6,] 0.3584003 0.3308089

[7,] 0.3476023 0.3223349

[8,] 0.3376615 0.3142836

[9,] 0.3284267 0.3066269

[10,] 0.3197876 0.2993330



Sketch of the proof

Let us assume that X1,X2, . . . are i.i.d.

Then we define ϕX (t) := E exp(itX1). This is the so-called

characteristic function of X1. (By i.i.d. assumption all Xi have

the same characteristic function.)

One can show:

◮ For random variables X and Y , if ϕX (t) = ϕY (t) then

X
D
= Y . (Uniqueness theorem)

◮ If ϕXn
(t) → ϕX (t) for all t , then Xn

D→ X . (Continuity

theorem)

◮ If X and Y are independent, then ϕX+Y (t) = ϕX (t)ϕY (t).

◮ ϕaX (t) = ϕX (at).

◮ ϕX+µ(t) = eitµϕX (t).



Sketch of the proof

By assumption X1,X2, . . . are i.i.d., it follows that for

Zn = 1
σ
√

n
Sn, where Sn = (X1 − µ) + (X2 − µ) + . . .+ (Xn − µ).

ϕZn
(t) = ϕSn

(t/(σ
√

n))

= (ϕX1−µ(t/(σ
√

n)))n

=
(

Eeit(X1−µ)/(σ
√

n)
)n

≈
(

E

[

1 +
it

σ
√

n
(X1 − µ)− t2

2σ2n
(X1 − µ)2

︸ ︷︷ ︸

2 term Taylor expansion

])n

=

(

1 − t2

2n

)n

→ e−t2/2 = EeitZ ,

where Z ∼ N (0,1).


