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Definitions and basic comments

Let (Ω,A,P) be a measure space.

Definition: a filtration is a sequence {An|n ∈ N} of σ-algebras

such that A0 ⊂ A1 ⊂ . . . ⊂ A.

Definition: The SP {Yn|n ∈ N} is adapted to the filtration {An|n ∈ N}
⇔ Yn is An-measurable for all n.

Intuition: growing information An... And the value of Yn is

known as soon as the information An is available.

The SP {Yn|n ∈ N} is a martingale w.r.t. the filtration

{An|n ∈ N} ⇔

◮ (i) {Yn|n ∈ N} is adapted to the filtration {An|n ∈ N}.

◮ (ii) E[|Yn|] < ∞ for all n.

◮ (iii) E[Yn+1|An] = Yn a.s. for all n.



Definitions and basic comments

Remarks:

◮ (iii) shows that a martingale can be thought of as the

fortune of a gambler betting on a fair game.

◮ (iii) ⇒ E[Yn] = E[Y0] for all n (mean-stationarity). Using (iii),

we also have (for k = 2,3, . . .)

E[Yn+k |An] = E

[

E[Yn+k |An+k−1]
∣

∣An

]

= E[Yn+k−1|An] =
= . . . = E[Yn+1|An] = Yn

a.s. for all n.



Definitions and basic comments

Let σ(X1, . . . ,Xn) be the smallest σ-algebra containing

{X−1
i (B) |B ∈ B, i = 1, . . . ,n}.

The SP {Yn|n ∈ N} is a martingale w.r.t. the SP {Xn|n ∈ N} ⇔
{Yn|n ∈ N} is a martingale w.r.t. the filtration {σ(X1, . . . ,Xn)|n ∈ N} ⇔

◮ (i) Yn is σ(X1, . . . ,Xn)-measurable for all n.

◮ (ii) E[|Yn|] < ∞ for all n.

◮ (iii) E[Yn+1|X1, . . . ,Xn] = Yn a.s. for all n.

Remark:

◮ (i) just states that “Yn is a function of X1, . . . ,Xn only".



Definitions and basic comments

A lot of examples...



Example 1

Let X1,X2, . . . be ⊥⊥ integrable r.v.’s, with common mean 0.

Let Yn :=
∑n

i=1 Xi .

Then {Yn} is a martingale w.r.t. {Xn}.

Indeed,

◮ (i) is trivial.

◮ (ii) is trivial.

◮ (iii): with An := σ(X1, . . . ,Xn), we have

E[Yn+1|An] = E[Yn + Xn+1|An] = E[Yn|An] + E[Xn+1|An]

= Yn + E[Xn+1] = Yn + 0 = Yn a.s. for all n,

where we used that Yn is An-measurable and that Xn+1 ⊥⊥ An.

Similarly, if X1,X2, . . . are ⊥⊥ and integrable with means

µ1, µ2, . . ., respectively, {
∑n

i=1(Xi − µi)} is a martingale w.r.t.

{Xn}.



Example 2

Let X1,X2, . . . be ⊥⊥ integrable r.v.’s, with common mean 1.

Let Yn :=
∏n

i=1 Xi .

Then {Yn} is a martingale w.r.t. {Xn}.

Indeed,

◮ (i) is trivial.

◮ (ii) is trivial.

◮ (iii): with An := σ(X1, . . . ,Xn), we have

E[Yn+1|An] = E[YnXn+1|An] = YnE[Xn+1|An] = YnE[Xn+1] = Yn

a.s. for all n, where we used that Yn is An-measurable

(and hence behaves as a constant in E[ . |An]).

Similarly, if X1,X2, . . . are ⊥⊥ and integrable with means

µ1, µ2, . . ., respectively, {
∏n

i=1(Xi/µi)} is a martingale w.r.t.

{Xn}.



Example 2

The previous example is related to basic models for stock

prices.

Assume X1,X2, . . . are positive, ⊥⊥ , and integrable r.v.’s.

Let Yn := c
∏n

i=1 Xi , where c is the initial price.

The quantity Xi − 1 is the change in the value of the stock over

a fixed time interval (one day, say) as a fraction of its current

value. This multiplicative model (i) ensures nonnegativeness of

the price and (ii) is compatible with the fact fluctuations in the
value of a stock are roughly proportional to its price.

Various models are obtained for various distributions of the Xi ’s:

◮ Discrete Black-Scholes model: Xi = eηi , where

ηi ∼ N (µ, σ2) for all i .

◮ Binomial model: Xi = e−r (1 + a)2ηi−1, where ηi ∼ Bin(1,p)
for all i (r = interest rate, by which one discounts future rewards).



Example 3: random walks

Let X1,X2, . . . be i.i.d., with P[Xi = 1] = p and P[Xi = −1] = q = 1 − p

Let Yn :=
∑n

i=1 Xi .

❀ The SP {Yn} is called a random walk.

Remarks:

◮ If p = q, the RW is said to be symmetric.

◮ Of course, from Example 1, we know that

{(
∑n

i=1 Xi)− n(p − q)} is a martingale w.r.t. {Xn}.

But other martingales exist for RWs...



Example 3: random walks

Consider the non-symmetric case (p 6= q) and let Sn :=
(q

p

)Yn

.

Then {Sn} is a martingale w.r.t. {Xn}.

Indeed,

◮ (i) is trivial.

◮ (ii): |Sn| ≤ max((q/p)n, (q/p)−n). Hence, E[|Sn|] < ∞.

◮ (iii): with An := σ(X1, . . . ,Xn), we have

E[Sn+1|An] = E[(q/p)Yn(q/p)Xn+1 |An] = (q/p)Yn E[(q/p)Xn+1 |An]

= Sn E[(q/p)Xn+1 ] = Sn

(

(q/p)1×p+(q/p)−1×q
)

= Sn, a.s. for all n

where we used that Yn is An-measurable and that Xn+1 ⊥⊥ An.



Example 3: random walks

Consider the symmetric case (p = q) and let Sn := Y 2
n − n.

Then {Sn} is a martingale w.r.t. {Xn}.

Indeed,

◮ (i) is trivial.

◮ (ii): |Sn| ≤ n2 − n. Hence, E[|Sn|] < ∞.

◮ (iii): with An := σ(X1, . . . ,Xn), we have

E[Sn+1|An] = E[(Yn + Xn+1)
2 − (n + 1)|An]

= E[(Y 2
n + X 2

n+1 + 2YnXn+1)− (n + 1)|An]

= Y 2
n +E[X 2

n+1|An]+2YnE[Xn+1|An]−(n+1)

= Y 2
n + E[X 2

n+1] + 2YnE[Xn+1]− (n + 1)

= Sn a.s. for all n,

where we used that Yn is An-measurable and that Xn+1 ⊥⊥ An.



Example 4: De Moivre’s martingales

Let X1,X2, . . . be i.i.d., with P[Xi = 1] = p and P[Xi = −1] = q = 1 − p

Let Y0 := k ∈ {1,2, . . . ,m − 1} be the initial state.

Let Yn+1 := (Yn + Xn+1) I[Yn /∈ {0,m}] + Yn I[Yn ∈ {0,m}].

❀ The SP {Yn} is called a random walk with absorbing

barriers.

Remarks:

◮ Before being caught either in 0 or m, this is just a RW.

◮ As soon as you get in 0 or m, you stay there forever.



Example 4: De Moivre’s martingales

Let X1,X2, . . . be i.i.d., with P[Xi = 1] = p and P[Xi = −1] = q = 1 − p

Let Y0 := k ∈ {1,2, . . . ,m − 1} be the initial state.

Let Yn+1 := (Yn + Xn+1) I[Yn /∈ {0,m}] + Yn I[Yn ∈ {0,m}].

In this new setup and with this new definition of Yn,

◮ In the non-symmetric case,

{Sn :=
(q

p

)Yn

} is still a martingale w.r.t. {Xn}.

◮ In the symmetric case,

{Sn := Y 2
n − n} is still a martingale w.r.t. {Xn}.

(exercise).



Example 5: branching processes

Consider some population, in which each individual i of the Zn

individuals in the nth generation gives birth to Xn+1,i children (the

Xn,i ’s are i.i.d., take values in N, and have common mean µ < ∞).

Assume that Z0 = 1.

Then {Zn/µ
n} is a martingale w.r.t.

{An := σ(the Xm,i ’s,m ≤ n)}.

Indeed,

◮ (i), (ii): exercise...

◮ (iii): E

[

Zn+1

µn+1 |An

]

= 1
µn+1 E

[

∑Zn

i=1 Xn+1,i |An

]

= 1
µn+1

∑Zn

i=1 E[Xn+1,i |An] =
1

µn+1

∑Zn

i=1 E[Xn+1,i ] =
Zn
µn a.s. for all n.

In particular, E

[

Zn

µn

]

= E

[

Z0

µ0

]

= 1. Hence, E[Zn] = µn for all n.



Example 6: Polya’s urn

Consider an urn containing b blue balls and r red ones.

Pick randomly some ball in the urn and put it back in the urn

with an extra ball of the same color. Repeat this procedure.

This is a so-called contamination process.

Let Xn be the number of red balls in the urn after n steps.

Let

Rn =
Xn

b + r + n

be the proportion of red balls in the urn after n steps.

Then {Rn} is a martingale w.r.t. {Xn}.



Example 6: Polya’s urn

Indeed,

◮ (i) is trivial.

◮ (ii): 0 ≤ |Rn| ≤ 1. Hence, E[|Rn|] < ∞.

◮ (iii): with An := σ(X1, . . . ,Xn), we have

E[Xn+1|An] = (Xn + 1)
Xn

r + b + n
+ (Xn + 0)

(

1−
Xn

r + b + n

)

=
(Xn + 1)Xn + Xn((r + b + n)− Xn)

r + b + n

=
(r + b + n + 1)Xn

r + b + n

= (r + b + n + 1)Rn a.s. for all n,

so that E[Rn+1|An] = Rn a.s. for all n.
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Stopping times

Let (Yn) be a martingale w.r.t. (An)
Let T : (Ω,A,P) → N := N ∪ {∞} be a r.v.

Definition: T is a stopping time w.r.t. (An) ⇔
(i) T is a.s. finite (i.e., P[T < ∞] = 1).

(ii) [T = n] ∈ An for all n.

Remarks:

◮ (ii) is the crucial assumption:

it says that one knows, at time n, on the basis of the

“information" An, whether T = n or not, that is, whether

one should stop at n or not.

◮ (i) just makes (almost) sure that one will stop at some point.



Stopping times (examples)

(Kind of) examples...

Let (Yn) be a martingale w.r.t. (An). Let B ∈ B.

(A) Let T := inf{n ∈ N|Yn ∈ B} be the time of 1st entry of (Yn)
into B. Then,

[T = n] = [Y0 /∈ B,Y1 /∈ B, . . . ,Yn−1 /∈ B,Yn ∈ B] ∈ An.

Hence, provided that T is a.s. finite, T is a ST.

(B) Let T := sup{n ∈ N|Yn ∈ B} be the time of last escape of

(Yn) out of B. Then,

[T = n] = [Yn ∈ B,Yn+1 /∈ B,Yn+2 /∈ B, . . .] /∈ An.

Hence, T is not a ST.



Stopping times (examples)

(C) Let T := k a.s. (for some fixed integer k). Then, of course,

(i) T < ∞ a.s. and (ii)

[T = n] =

{

∅ if n 6= k

Ω if n = k ,

which is in An for all n. Hence, T is a ST.



Stopping times (properties)

Properties:

◮ [T = n] ∈ An ∀n
(1)
⇔ [T ≤ n] ∈ An ∀n

(2)
⇔ [T > n] ∈ An ∀n.

Indeed,
(1)
⇒ follows from [T ≤ n] =

⋃n
k=1[T = k ].

(1)
⇐ follows from [T = n] = [T ≤ n]\[T ≤ n − 1].
(2)
⇔ follows from [T ≤ n] = Ω\[T > n].

◮ T1,T2 are ST ⇒ T1 + T2, max(T1,T2), and min(T1,T2) are

ST (exercise).

◮ Let (Yn) be a martingale w.r.t. (An).
Let T be a ST w.r.t. (An).
Then YT :=

∑∞
n=0 YnI[T=n] is a r.v.

Indeed, [YT ∈ B] =
⋃∞

n=0{[T = n] ∩ [Yn ∈ B]} ∈ A.



Stopped martingale

A key lemma:

Lemma: Let (Yn) be a martingale w.r.t. (An). Let T be a ST

w.r.t. (An).
Then {Zn := Ymin(n,T )} is a martingale w.r.t. (An).

Proof: note that

Zn = Ymin(n,T ) =

n−1
∑

k=0

Yk I[T=k ] + YnI[T≥n].

So

◮ (i): Zn is An-measurable for all n.

◮ (ii): |Zn| ≤
∑n−1

k=0 |Yk |I[T=k ] + |Yn|I[T≥n] ≤
∑n

k=0 |Yk |.
Hence, E[|Zn|] < ∞.



Stopped martingale

◮ (iii): we have

E[Zn+1|An]− Zn = E[Zn+1 − Zn|An]

= E[(Yn+1 − Yn)I[T≥n+1]|An]

= E[(Yn+1 − Yn)I[T>n]|An]

= I[T>n] E[Yn+1 − Yn|An]

= I[T>n]

(

E[Yn+1|An]− Yn

)

= 0 a.s. for all n,

where we used that I[T>n] is An-measurable. �



Stopped martingale

Corollary: Let (Yn) be a martingale w.r.t. (An). Let T be a ST

w.r.t. (An). Then E[Ymin(n,T )] = E[Y0] for all n.

Proof: the lemma and the mean-stationarity of martingales yield
E[Ymin(n,T )] = E[Zn] = E[Z0] = E[Ymin(0,T )] = E[Y0] for all n. �

In particular, if the ST is such that T ≤ k a.s. for some k , we

have that, for n ≥ k ,

Ymin(n,T ) = YT a.s.,

so that

E[YT ] = E[Y0].



Stopped martingale

E[YT ] = E[Y0] does not always hold.

Example: the doubling strategy, for which the winnings are

Yn =

n
∑

i=1

CiXi ,

where the Xi ’s are i.i.d. P[Xi = 1] = P[Xi = −1] = 1
2 and Ci = 2i−1b.

The SP (Yn) is a martingale w.r.t. (Xn) (exercise).

Let T = inf{n ∈ N|Xn = 1} (exercise: T is a ST).

As we have seen, YT = b a.s., so that E[YT ] = b 6= 0 = E[Y0].

However, as shown by the following result, E[YT ] = E[Y0] holds

under much broader conditions than "T ≤ k a.s."



Optional stopping theorem

Theorem: Let (Yn) be a martingale w.r.t. (An). Let T be a ST

w.r.t. (An). Then if (i) E[|YT |] < ∞ and (ii)

limn→∞ E[Yn I[T>n]] = 0, we have E[YT ] = E[Y0].

Proof: since Ymin(n,T ) = Yn I[T>n] + YT I[T≤n], we have

YT = YT I[T≤n] + YT I[T>n] = (Ymin(n,T ) − Yn I[T>n]) + YT I[T>n].

Taking expectations, we obtain

E[YT ] = E[Y0]− E[Yn I[T>n]] + E[YT I[T>n]].

By taking the limit as n → ∞ and using (ii),

E[YT ] = E[Y0] + lim
n→∞

E[YT I[T>n]].

The result follows from limn→∞ P[T > n] = P[T = ∞] = 0. �



Optional stopping theorem

Theorem: Let (Yn) be a martingale w.r.t. (An). Let T be a ST

w.r.t. (An). Then if (i) E[|YT |] < ∞ and (ii)

limn→∞ E[Yn I[T>n]] = 0, we have E[YT ] = E[Y0].

Particular sufficient conditions for (i), (ii):

◮ (a) T ≤ k a.s. Indeed,

(i) E[|YT |] = E[|
∑k

n=0 Yn I[T=n]|] ≤
∑k

n=0 E[|Yn|] < ∞.
(ii) YnI[T>n] = 0 a.s. for n > k . Hence, E[Yn I[T>n]] = 0 for n > k ,

so that (ii) holds.

◮ (b) (Yn) is uniformly integrable.



Optional stopping theorem (examples)

Let X1,X2, . . . be i.i.d., with P[Xi = 1] = p and

P[Xi = −1] = q = 1 − p.

Let Y0 := k ∈ {1,2, . . . ,m − 1} be the initial state.

Let Yn+1 := (Yn + Xn+1) I[Yn /∈{0,m}] + Yn I[Yn∈{0,m}].

❀ The SP (Yn) is called a random walk with absorbing barriers.

In the symmetric case, (Yn) is a martingale w.r.t. (Xn) (exercise).

Let T := inf{n ∈ N|Yn ∈ {0,m}} (exercise: T is a stopping time,

and the assumptions of the optional stopping thm are satisfied).

❀ E[YT ] = E[Y0].



Optional stopping theorem (examples)

Let pk := P[YT = 0].

Then

E[YT ] = 0 × pk + m × (1 − pk)

and

E[Y0] = E[k ] = k ,

so that E[YT ] = E[Y0] yields

m(1 − pk) = k ,

that is, solving for pk ,

pk =
m − k

m
.



Optional stopping theorem (examples)

Is there a way to get E[T ] (still in the symmetric case)?

We know that (Sn := Y 2
n − n) is also a martingale w.r.t. (Xn)

(exercise: with this martingale and the same ST, the

assumptions of the optional stopping theorem are still

satisfied).

❀ E[ST ] = E[S0],where

E[ST ] = E[Y 2
T ]− E[T ] =

(

02 × pk + m2 × (1 − pk )
)

− E[T ]

and

E[S0] = E[Y 2
0 − 0] = E[k2] = k2.

Hence,

E[T ] = m2(1 − pk )− k2 = m2 ×
k

m
− k2 = k(m − k).



Optional stopping theorem (examples)

Let X1,X2, . . . be i.i.d., with P[Xi = 1] = p and

P[Xi = −1] = q = 1 − p.

Let Y0 := k ∈ {1,2, . . . ,m − 1} be the initial state.

Let Yn+1 := (Yn + Xn+1) I[Yn /∈{0,m}] + Yn I[Yn∈{0,m}].

❀ The SP (Yn) is called a random walk with absorbing barriers.

In the non-symmetric case,

(

Sn :=
(

q
p

)Yn
)

is a martingale

w.r.t. (Xn). Let T := inf{n ∈ N|Sn ∈ {0,m}} (exercise: T is a

stopping time, and the assumptions of the optional stopping

thm are satisfied). ❀ E[ST ] = E[S0].



Optional stopping theorem (examples)

Let again pk := P[YT = 0]. Then, since

E[ST ] = E

[(q

p

)YT
]

=
(q

p

)0
× pk +

(q

p

)m
(1 − pk),

and
E[S0] = E

[(q

p

)Y0
]

= E

[(q

p

)k]

=
(q

p

)k
,

we deduce that
(q

p

)0
× pk +

(q

p

)m
(1 − pk ) =

(q

p

)k
,

that is, solving for pk ,

pk =

(q

p

)k
−
(q

p

)m

1 −
(q

p

)m .



Optional stopping theorem (examples)

Is there a way to get E[T ] here as well?

In the non-symmetric case, (Rn := Yn − min(n,T )(p − q)) is a

martingale w.r.t. (Xn) (exercise: check this, and check that the

optional stopping thm applies with (Rn) and T ).

❀ E[RT ] = E[R0], where

E[RT ] = E[YT−T (p−q)] = E[YT ]−(p−q)E[T ] =
(

0×pk+m×(1−pk)
)

−

and
E[R0] = E[Y0 − min(0,T )(p − q)] = E[Y0] = E[k ] = k .

Hence,

E[T ] =
m(1 − pk)− k

p − q
=

m
(

1 −
(q

p

)k)

− k
(

1 −
(q

p

)m)

(p − q)
(

1 −
(q

p

)m) .
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Sub- and super-martingales

Not every game is fair...

There are also favourable and defavourable games.

Therefore, we introduce the following concepts:

The SP (Yn)n∈N is a submartingale w.r.t. the filtration (An)n∈N ⇔

◮ (i) (Yn)n∈N is adapted to the filtration (An)n∈N.

◮ (ii)’ E[Y+
n ] < ∞ for all n.

◮ (iii)’ E[Yn+1|An] ≥ Yn a.s. for all n.

The SP (Yn)n∈N is a supermartingale w.r.t. the filtration (An)n∈N ⇔

◮ (i) (Yn)n∈N is adapted to the filtration (An)n∈N.

◮ (ii)” E[Y−
n ] < ∞ for all n.

◮ (iii)” E[Yn+1|An] ≤ Yn a.s. for all n.



Sub- and super-martingales

Remarks:

◮ (iii)’ shows that a submartingale can be thought of as the

fortune of a gambler betting on a favourable game.

◮ (iii)’ ⇒ E[Yn] ≥ E[Y0] for all n.

◮ (iii)” shows that a supermartingale can be thought of as the

fortune of a gambler betting on a defavourable game.

◮ (iii)” ⇒ E[Yn] ≤ E[Y0] for all n.

◮ (Yn) is a submartingale w.r.t. (An)
⇔ (−Yn) is a supermartingale w.r.t. (An).

◮ (Yn) is a martingale w.r.t. (An)
⇔ (Yn) is both a sub- and a supermartingale w.r.t. (An).



Sub- and super-martingales

Consider the following strategy for the fair version of roulette

(without the "0" slot):

Bet b euros on an even result. If you win, stop.

If you lose, bet 2b euros on an even result. If you win, stop.

If you lose, bet 4b euros on an even result. If you win, stop...

And so on...

How good is this strategy?

(a) If you first win in the nth game, your total winning is

−
n−2
∑

i=0

2ib + 2n−1b = b

⇒ Whatever the value of n is, you win b euros with this

strategy.



Sub- and super-martingales

(b) You will a.s. win. Indeed, let T be the time index of first

success. Then

P[T < ∞] =
∞
∑

n=1

P[n − 1 first results are "odd", then "even"]

=
∞
∑

n=1

(1

2

)n−1 1

2
=

∞
∑

n=1

(1

2

)n
= 1.

But

(c) The expected amount you lose just before you win is

0×
1

2
+b×

(1

2

)2
+(b+2b)×

(1

2

)3
+. . .+

(

n−2
∑

i=0

2ib

)

(1

2

)n
+. . . = ∞

⇒ Your expected loss is infinite!

(d) You need an unbounded wallet...



Sub- and super-martingales

Let us try to formalize strategies...

Consider the SP (Xn)n∈N, where Xn is your winning per unit

stake in game n. Denote by (An)n∈N the corresponding filtration

(An = σ(X1, . . . ,Xn)).

Definition: A gambling strategy (w.r.t. (Xn)) is a SP (Cn)n∈N

such that Cn is An−1-measurable for all n.

Remarks:

◮ Cn = Cn(X1, . . . ,Xn−1) is what you will bet in game n.

◮ A0 = {∅,Ω).



Sub- and super-martingales

Using some strategy (Cn), your total winning after n games is

Y
(C)
n =

n
∑

i=1

CiXi .

A natural question:

Is there any way to choose (Cn) so that (Y
(C)
n ) is "nice"?.

Consider the "blind" strategy Cn = 1 (for all n), that consists in

betting 1 euro in each game, and denote by (Yn =
∑n

i=1 Xi) the

corresponding process of winnings.

Then, here is the answer:

Theorem: Let (Cn) be a gambling strategy with nonnegative

and bounded r.v.’s. Then if (Yn) is a martingale, so is (Y
(C)
n ). If

(Yn) is a submart., so is (Y
(C)
n ). And if (Yn) is a supermart., so

is (Y
(C)
n ).



Sub- and super-martingales

Proof:

◮ (i) is trivial.

◮ (ii): |Y
(C)
n | ≤

∑n
i=1 ai |Xi |. Hence, E[|Y

(C)
n |] < ∞.

◮ (iii),(iii)’,(iii)”: with An := σ(X1, . . . ,Xn), we have

E[Y
(C)
n+1|An] = E[Y

(C)
n + Cn+1Xn+1|An]

= Y
(C)
n + Cn+1 E[Xn+1|An]

= Y
(C)
n + Cn+1 E[Yn+1 − Yn|An]

= Y
(C)
n + Cn+1

(

E[Yn+1|An]− Yn

)

,

where we used that Cn+1 is An-measurable. Since

Cn+1 ≥ 0, the result follows. �

Remark: The second part was checked for martingales only.

Exercise: check (ii)’ and (ii)”...



Convergence of martingales

Theorem: let (Yn) be a submartingale w.r.t. (An). Assume that,

for some M, E[Y+
n ] ≤ M for all n. Then

(i) ∃Y∞ such that Yn
a.s.
→ Y∞ as n → ∞.

(ii) If E[|Y0|] < ∞, E[|Y∞|] < ∞.

The following results directly follow:

Corollary 1: let (Yn) be a submartingale or a supermartingale

w.r.t. (An). Assume that, for some M, E[|Yn|] ≤ M for all n.

Then ∃Y∞ (satisfying E[|Y∞|] < ∞) such that Yn
a.s.
→ Y∞ as

n → ∞.

Corollary 2: let (Yn) be a negative submartingale or a positive

supermartingale w.r.t. (An). Then ∃Y∞ such that Yn
a.s.
→ Y∞ as

n → ∞.



Example: products of r.v.’s

Let X1,X2, . . . be i.i.d. r.v.’s, with common distribution

distribution of Xi
values 0 2

probabilities 1
2

1
2

The Xi ’s are integrable r.v.’s with common mean 1,
so that (Yn =

∏n
i=1 Xi) is a (positive) martingale w.r.t. (Xn)

(example 2 in the previous lecture).

Consequently, ∃Y∞ such that Yn
a.s.
→ Y∞ as n → ∞.

We showed, in Lecture #4, that Yn
P
→ 0 as n → ∞ so that

Y∞ = 0 a.s.

But we also showed there that convergence in L1 does not

hold. To ensure L1-convergence, one has to require uniform

integrability of (Yn).



Example: Polya’s urn

Consider an urn containing b blue balls and r red ones.

Pick randomly some ball in the urn and put it back in the urn

with an extra ball of the same color. Repeat this procedure.

Let Xn be the number of red balls in the urn after n steps.

Let Rn = Xn

b+r+n
be the proportion of red balls after n steps.

We know that (Rn) is a martingale w.r.t. (Xn).

Now, |Rn| ≤ 1 (⇒ E[|Rn|] ≤ 1), so that ∃R∞ (satisfying E[|R∞|] < ∞)

such that Rn
a.s.
→ R∞ as n → ∞.

Clearly, uniform integrability holds. Hence, Rn
L1

→ R∞ as
n → ∞.

Remark: it can be shown that R∞ has a beta distribution:

P[R∞ ≤ u] =

(

b + r

r

)∫ u

0
x r−1(1 − x)b−1 dx , u ∈ (0,1).



Example: branching processes

Consider some population, in which each individual i of the Zn

individuals in the nth generation gives birth to Xn,i children (the

Xn,i ’s are i.i.d., take values in N, and have common mean µ < ∞).

Assume that Z0 = 1.

Then (Yn := Zn/µ
n) is a martingale w.r.t.

(An := σ(Xn,i ,n fixed)).

What can be said about the long-run state?

E[|Yn|] = E[Y0] = 1 for all n ⇒ ∃Y∞ (satisfying E[|Y∞|] < ∞)

such that Yn
a.s.
→ Y∞ as n → ∞.

❀ Zn ≈ Y∞µn for large n.



Example: branching processes

Case 1: µ ≤ 1.

If p0 := P[Xn,i = 0] > 0, Zn
a.s.
→ Z∞ := 0 as n → ∞.

Proof:

Let k ∈ N0. Then

P[Z∞ = k ] = P[Zn = k ∀n ≥ n0] = P[Zn0
= k ] (P[Zn0+1 = k |Zn0

= k ])∞

where

P[Zn0+1 = k |Zn0
= k ] ≤ P[Zn0+1 6= 0|Zn0

= k ] = 1 − (p0)
k < 1.

Therefore, P[Z∞ = k ] = 0 for all k ∈ N0, so that Z∞ = 0 a.s. �



Example: branching processes

Case 2: µ > 1.

Then Zn
a.s.
→ Z∞ as n → ∞, where the distribution of Z∞ is given

by

distribution of Z∞

values 0 ∞

probabilities π 1 − π

where π ∈ (0,1) is the unique solution of g(s) = s, where,

defining pk := P[Xn,i = k ], we let g(s) :=
∑∞

k=0 pksk .

Proof:

Clearly, since Zn ≈ Y∞µn for large n, Zn
a.s.
→ Z∞ as n → ∞,

where Z∞ only assumes the values 0 and ∞, with proba a and

1 − a, respectively, say.

We may assume that p0 > 0 (clearly, if p0 = 0, Z∞ = ∞ a.s.)



Example: branching processes

There is indeed a unique π ∈ (0,1) such that g(π) = π, since g

is monotone increasing, g(0) = p0 > 0, and g′(1) = µ > 1.

❀ (πZn) is a martingale w.r.t. (An), since

E[πZn+1|An] = E[π
∑Zn

i=1 Xn+1,i |An] =
(

E[πXn+1,1|An]
)Zn

=
(

E[πXn+1,1]
)Zn =

(

∞
∑

k=0

πkpk

)Zn

=
(

g(π)
)Zn = πZn

a.s. for all n.

(πZn) is also uniformly integrable, so that πZn
L1

→ πZ∞ as n → ∞.

Therefore, E[πZ∞] = π0 × a + π∞ × (1 − a) = a is equal to

E[πZ0 ] = E[π1] = π.

Hence, P[Z∞ = 0] = π and P[Z∞ = ∞] = 1 − π. �



Outline of the course
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Markov chains

The importance of these processes comes from two facts:

◮ there is a large number of physical, biological, economic,

and social phenomena that can be described in this way,

and

◮ there is a well-developed theory that allows for doing the

computations and obtaining explicit results...



Definitions and examples

Let S be a finite or countable set (number its elements using i = 1,2, ...
Let (Xn)n∈N be a SP with Xn : (Ω,A,P) → S for all n.

Definition: (Xn) is a Markov chain (MC) on S ⇔

P[Xn+1 = j |X0,X1, . . . ,Xn] = P[Xn+1 = j |Xn] ∀n ∀j .

Remarks:

◮ The equation above is the so-called Markov property. It

states that the future does only depend on the present

state of the process, and not on its past.

◮ S is the state space.

◮ The elements of S are the states.



Definitions and examples

Definition: The MC (Xn) is homogeneous (❀ HMC) ⇔

P[Xn+1 = j |Xn = i] = P[X1 = j |X0 = i] ∀n ∀i , j .

For a HMC, one can define the transition probabilities

pij = P[Xn+1 = j |Xn = i] ∀i , j ,

which are usually collected in the transition matrix P = (pij).

The transition matrix P is a "stochastic matrix", which means

that

◮ pij ∈ [0,1] for all i , j .

◮
∑

j pij = 1 for all i .

In vector notation, P1 = 1, where 1 stands for the vector of

ones with the appropriate dimension.



Example 1: random walk

Let X1,X2, . . . be i.i.d., with P[Xi = 1] = p and P[Xi = −1] = q = 1 − p.
Let Yi :=

∑n
i=1 Xi be the corresponding random walk.

❀ (Yn) is a HMC on S = Z with transition matrix

P =







.
.
.

.
.
.

.
.
.

q 0 p
q 0 p

q 0 p

.
.
.

.
.
.

.
.
.






.



Example 2: rw with absorbing barriers

Let X1,X2, . . . be i.i.d., with P[Xi = 1] = p and P[Xi = −1] = q = 1 − p.

Let Y0 := k ∈ {1,2, . . . ,m − 1} be the initial state.

Let Yn+1 := (Yn + Xn+1) I[Yn /∈{0,m}] + Yn I[Yn∈{0,m}].

❀ (Yn) is a HMC on S = {0,1, . . . ,m} with transition matrix

P =







1 0 . . .

q 0 p
q 0 p

.
.
.

.
.
.

.
.
.

q 0 p
. . . 0 1






.



Example 3: success runs

Let X1,X2, . . . be i.i.d., with P[Xi = 1] = p and P[Xi = 0] = q = 1 − p.

Let Y0 := 0 be the initial state.

Let Yn+1 := (Yn + 1) I[Xn+1=1] + 0 × I[Xn+1=0].

❀ (Yn) is a HMC on S = N with transition matrix

P =

(

q p 0 . . .

q 0 p 0 . . .

q 0 0 p 0 . . .

.

.

.
.
.
.

.
.
.

)

.



Example 4: discrete queue models

Let Yn be the number of clients in a queue at time n (Y0 = 0).

Let Xn be the number of clients entering the shop between time

n − 1 and n (Xn i.i.d., with P[Xn = i] = pi ;
∑∞

i=0 pi = 1).

Assume a service needs exactly one unit of time to be

completed.

Then

Yn+1 = (Yn + Xn − 1) I[Yn>0] + Xn I[Yn=0],

and (Yn) is a HMC on S = N with transition matrix

P =





p0 p1 p2 . . .

p0 p1 p2 . . .

0 p0 p1 p2 . . .

0 0 p0 p1 p2 . . .

.

.

.
.
.
.

.
.
.

.
.
.

.
.
.



 .



Example 5: stock management

Let Xn be the number of units on hand at the end of day n

(X0 = M).

Let Dn be the demand on day n (Dn i.i.d., P[Dn = i] = pi ;
∑∞

i=0 pi = 1).

Assume that if Xn ≤ m, it is (instantaneously) set to M again.

Then, letting x+ = max(x ,0), we have

Xn+1 = (Xn − Dn+1)
+
I[Xn>m] + (M − Dn+1)

+
I[Xn≤m],

and (Xn) is a HMC on S = {0,1, . . . ,M} (exercise: derive P).

Questions:

◮ if we make 12$ profit on each unit sold but it costs 2$ a day

to store items, what is the long-run profit per day of this

inventory policy?

◮ How to choose (m,M) to maximize profit?



Example 6: income classes

Assume that from one generation to the next, families change

their income group "Low", "Middle", or "High" (state 1,2, and 3,

respectively) according to a HMC with transition matrix

P =
(

.6 .3 .1

.2 .7 .1

.1 .3 .6

)

.

Questions:

◮ Do the fractions of the population in the three income

classes stabilize as time goes on?

◮ If this happens, how can we compute the limiting

proportions from P?



Higher-order transition probabilities

We let P = (pij), where pij = P[X1 = j |X0 = i].

Now, define P(n) = (p
(n)
ij ), where p

(n)
ij = P[Xn = j |X0 = i].

What is the link between P and P(n)?

❀ Theorem: P(n) = Pn.

Proof: the result holds for n = 1. Now, assume it holds for n.

Then (P(n+1))ij = P[Xn+1 = j |X0 = i] =
∑

k P[Xn+1 = j ,Xn =
k |X0 = i] =

∑

k P[Xn+1 = j |Xn = k ,X0 = i]P[Xn = k |X0 = i]
=
∑

k P[Xn+1 = j |Xn = k ]P[Xn = k |X0 = i] =
∑

k (P
(n))ik (P

(1))kj = (P(n)P)ij = (PnP)ij = (Pn+1)ij , so that the

result holds for n + 1 as well. �



Higher-order transition probabilities

Of course, this implies that

P(n+m) = Pn+m = PnPm = P(n)P(m), that is,

P[Xn+m = j |X0 = i] =
∑

k

P[Xn = k |X0 = i]P[Xm = j |X0 = k ],

which are the so-called Chapman-Kolmogorov equations.



Higher-order transition probabilities

Clearly, the distribution of Xn is of primary interest.

Let a(n) be the (line) vector with j th component

(a(n))j = P[Xn = j].
❀ Theorem: a(n) = a(0)Pn.

Proof: using the total probability formula, we obtain (a(n))j =
P[Xn = j] =

∑

k P[Xn = j |X0 = k ]P[X0 = k ] =
∑

k (a
(0))k (P

(n))kj

= (a(0)P(n))j = (a(0)Pn)j , which establishes the result. �

This shows that one can very easily compute the distribution

of Xn in terms of

◮ the distribution of X0, and

◮ the transition matrix P.



Higher-order transition probabilities

Proposition: let (Xn) be a HMC on S. Then

P[X1 = i1,X2 = i2, . . . ,Xn = in|X0 = i0],

P[Xm+1 = i1,Xm+2 = i2, . . . ,Xm+n = in|Xm = i0],

and

P[Xm+1 = i1,Xm+2 = i2, . . . ,Xm+n = in|X0 = j0,X1 = j1, . . . ,Xm = i0]

all are equal to pi0i1pi1i2 . . . pin−1in .

Proof: exercise...


