Stochastic Processes (Lecture #5)

Thomas Verdebout

Université Libre de Bruxelles
Outline of the course

1. A short introduction.
2. Basic probability review.
3. Martingales.
Outline of the course

1. A short introduction.
2. Basic probability review.
3. **Martingales.**
 3.1. Definitions and examples.
 3.2. Sub- and super- martingales, gambling strategies.
 3.3. Stopping times and the optional stopping theorem.
 3.4. Limiting results.
Definitions and basic comments

Let \((\Omega, \mathcal{A}, P)\) be a measure space.

Definition: a filtration is a sequence \(\{\mathcal{A}_n|n \in \mathbb{N}\}\) of \(\sigma\)-algebras such that \(\mathcal{A}_0 \subset \mathcal{A}_1 \subset \ldots \subset \mathcal{A}\).

Definition: The SP \(\{Y_n|n \in \mathbb{N}\}\) is adapted to the filtration \(\{\mathcal{A}_n|n \in \mathbb{N}\}\) ⇔ \(Y_n\) is \(\mathcal{A}_n\)-measurable for all \(n\).

Intuition: growing information \(\mathcal{A}_n\)... And the value of \(Y_n\) is known as soon as the information \(\mathcal{A}_n\) is available.

The SP \(\{Y_n|n \in \mathbb{N}\}\) is a martingale w.r.t. the filtration \(\{\mathcal{A}_n|n \in \mathbb{N}\}\) ⇔

- (i) \(\{Y_n|n \in \mathbb{N}\}\) is adapted to the filtration \(\{\mathcal{A}_n|n \in \mathbb{N}\}\).
- (ii) \(E[|Y_n|] < \infty\) for all \(n\).
- (iii) \(E[Y_{n+1}|\mathcal{A}_n] = Y_n\) a.s. for all \(n\).
Definitions and basic comments

Remarks:

- (iii) shows that a martingale can be thought of as the fortune of a gambler betting on a fair game.

- (iii) $\Rightarrow E[Y_n] = E[Y_0]$ for all n (mean-stationarity). Using (iii), we also have (for $k = 2, 3, \ldots$)

$$E[Y_{n+k}|\mathcal{A}_n] = \left(E\left[E[Y_{n+k}|\mathcal{A}_{n+k-1}]|\mathcal{A}_n\right]\right) = E[Y_{n+k-1}|\mathcal{A}_n] = \ldots = E[Y_{n+1}|\mathcal{A}_n] = Y_n$$

a.s. for all n.
Let $\sigma(X_1, \ldots, X_n)$ be the smallest σ-algebra containing

$$\{X_i^{-1}(B) \mid B \in \mathcal{B}, \, i = 1, \ldots, n\}.$$

The SP $\{Y_n \mid n \in \mathbb{N}\}$ is a martingale w.r.t. the SP $\{X_n \mid n \in \mathbb{N}\} \iff \{Y_n \mid n \in \mathbb{N}\}$ is a martingale w.r.t. the filtration $\{\sigma(X_1, \ldots, X_n) \mid n \in \mathbb{N}\} \iff$

- (i) Y_n is $\sigma(X_1, \ldots, X_n)$-measurable for all n.
- (ii) $\mathbb{E}[\mid Y_n \mid] < \infty$ for all n.
- (iii) $\mathbb{E}[Y_{n+1} \mid X_1, \ldots, X_n] = Y_n$ a.s. for all n.

Remark:
- (i) just states that "Y_n is a function of X_1, \ldots, X_n only".
Definitions and basic comments

A lot of examples...
Example 1

Let X_1, X_2, \ldots be $\perp \perp$ integrable r.v.'s, with common mean 0. Let $Y_n := \sum_{i=1}^{n} X_i$. Then $\{Y_n\}$ is a martingale w.r.t. $\{X_n\}$.

Indeed,

- (i) is trivial.
- (ii) is trivial.
- (iii): with $A_n := \sigma(X_1, \ldots, X_n)$, we have

 \[
 E[Y_{n+1} | A_n] = E[Y_n + X_{n+1} | A_n] = E[Y_n | A_n] + E[X_{n+1} | A_n]
 \]

 \[
 = Y_n + E[X_{n+1}] = Y_n + 0 = Y_n \text{ a.s. for all } n,
 \]

 where we used that Y_n is A_n-measurable and that $X_{n+1} \perp \perp A_n$.

Similarly, if X_1, X_2, \ldots are $\perp \perp$ and integrable with means μ_1, μ_2, \ldots, respectively, $\{\sum_{i=1}^{n} (X_i - \mu_i)\}$ is a martingale w.r.t. $\{X_n\}$.
Example 2

Let X_1, X_2, \ldots be $\perp \perp$ integrable r.v.'s, with common mean 1. Let $Y_n := \prod_{i=1}^{n} X_i$. Then \{$Y_n$\} is a martingale w.r.t. \{\X_n\}.

Indeed,

- (i) is trivial.
- (ii) is trivial.
- (iii): with $\mathcal{A}_n := \sigma(X_1, \ldots, X_n)$, we have

\[
E[Y_{n+1} | \mathcal{A}_n] = E[Y_nX_{n+1} | \mathcal{A}_n] = Y_nE[X_{n+1} | \mathcal{A}_n] = Y_nE[X_{n+1}] = Y_n
\]
a.s. for all n, where we used that Y_n is \mathcal{A}_n-measurable (and hence behaves as a constant in $E[. | \mathcal{A}_n]$).

Similarly, if X_1, X_2, \ldots are $\perp \perp$ and integrable with means μ_1, μ_2, \ldots, respectively, \{$\prod_{i=1}^{n}(X_i/\mu_i)$\} is a martingale w.r.t. \{\X_n\}.
Example 2

The previous example is related to basic models for stock prices.

Assume X_1, X_2, \ldots are positive, \perp, and integrable r.v.’s. Let $Y_n := c \prod_{i=1}^{n} X_i$, where c is the initial price.

The quantity $X_i - 1$ is the change in the value of the stock over a fixed time interval (one day, say) as a fraction of its current value. This multiplicative model (i) ensures nonnegativeness of the price and (ii) is compatible with the fact fluctuations in the value of a stock are roughly proportional to its price.

Various models are obtained for various distributions of the X_i’s:

- **Discrete Black-Scholes model**: $X_i = e^{\eta_i}$, where $\eta_i \sim \mathcal{N}(\mu, \sigma^2)$ for all i.
- **Binomial model**: $X_i = e^{-r}(1 + a)^{2\eta_i-1}$, where $\eta_i \sim \text{Bin}(1, p)$ for all i ($r =$ interest rate, by which one discounts future rewards).
Example 3: random walks

Let X_1, X_2, \ldots be i.i.d., with $P[X_i = 1] = p$ and $P[X_i = -1] = q = 1 - p$.

Let $Y_n := \sum_{i=1}^{n} X_i$.

The SP $\{Y_n\}$ is called a random walk.

Remarks:

- If $p = q$, the RW is said to be symmetric.
- Of course, from Example 1, we know that $\{(\sum_{i=1}^{n} X_i) - n(p - q)\}$ is a martingale w.r.t. $\{X_n\}$.

But other martingales exist for RWs...
Example 3: random walks

Consider the non-symmetric case \((p \neq q) \) and let \(S_n := \left(\frac{q}{p} \right)^{Y_n} \).

Then \(\{S_n\} \) is a martingale w.r.t. \(\{X_n\} \).

Indeed,

- (i) is trivial.
- (ii): \(|S_n| \leq \max((q/p)^n, (q/p)^{-n}) \). Hence, \(E[|S_n|] < \infty \).
- (iii): with \(A_n := \sigma(X_1, \ldots, X_n) \), we have
 \[
 E[S_{n+1} | A_n] = E[(q/p)^{Y_n} (q/p)^{X_{n+1}} | A_n] = (q/p)^{Y_n} E[(q/p)^{X_{n+1}} | A_n] \\
 = S_n E[(q/p)^{X_{n+1}}] = S_n \left((q/p)^1 \times p + (q/p)^{-1} \times q \right) = S_n, \text{ a.s. for all} \\
 \]
 where we used that \(Y_n \) is \(A_n \)-measurable and that \(X_{n+1} \perp \perp A_n \).
Example 3: random walks

Consider the symmetric case \((p = q)\) and let \(S_n := Y_n^2 - n\). Then \(\{S_n\}\) is a martingale w.r.t. \(\{X_n\}\).

Indeed,

- (i) is trivial.
- (ii): \(|S_n| \leq n^2 - n\). Hence, \(\mathbb{E}[|S_n|] < \infty\).
- (iii): with \(\mathcal{A}_n := \sigma(X_1, \ldots, X_n)\), we have

\[
\mathbb{E}[S_{n+1}|\mathcal{A}_n] = \mathbb{E}[(Y_n + X_{n+1})^2 - (n + 1)|\mathcal{A}_n]
\]

\[
= \mathbb{E}[(Y_n^2 + X_{n+1}^2 + 2Y_nX_{n+1}) - (n + 1)|\mathcal{A}_n]
\]

\[
= Y_n^2 + \mathbb{E}[X_{n+1}^2|\mathcal{A}_n] + 2Y_n\mathbb{E}[X_{n+1}|\mathcal{A}_n] - (n + 1)
\]

\[
= Y_n^2 + \mathbb{E}[X_{n+1}^2] + 2Y_n\mathbb{E}[X_{n+1}] - (n + 1)
\]

\[
= S_n \text{ a.s. for all } n,
\]

where we used that \(Y_n\) is \(\mathcal{A}_n\)-measurable and that \(X_{n+1} \perp \mathcal{A}_n\).
Example 4: De Moivre’s martingales

Let X_1, X_2, \ldots be i.i.d., with $P[X_i = 1] = p$ and $P[X_i = -1] = q = 1 - p$.

Let $Y_0 := k \in \{1, 2, \ldots, m - 1\}$ be the initial state.

Let $Y_{n+1} := (Y_n + X_{n+1}) I[Y_n \notin \{0, m\}] + Y_n I[Y_n \in \{0, m\}]$.

\[\leadsto\text{ The SP } \{Y_n\} \text{ is called a random walk with absorbing barriers.}\]

Remarks:

\[\text{▷ Before being caught either in 0 or } m, \text{ this is just a RW.}\]

\[\text{▷ As soon as you get in 0 or } m, \text{ you stay there forever.}\]
Example 4: De Moivre’s martingales

Let X_1, X_2, \ldots be i.i.d., with $P[X_i = 1] = p$ and $P[X_i = -1] = q = 1 - p$.

Let $Y_0 := k \in \{1, 2, \ldots, m - 1\}$ be the initial state.

Let $Y_{n+1} := (Y_n + X_{n+1}) I[Y_n \notin \{0, m\}] + Y_n I[Y_n \in \{0, m\}]$.

In this new setup and with this new definition of Y_n,

- In the non-symmetric case,
 \[
 \{S_n := \left(\frac{q}{p}\right)^{Y_n}\} \text{ is still a martingale w.r.t. } \{X_n\}.
 \]

- In the symmetric case,
 \[
 \{S_n := Y_n^2 - n\} \text{ is still a martingale w.r.t. } \{X_n\}.
 \]

(exercise).
Example 5: branching processes

Consider some population, in which each individual i of the Z_n individuals in the nth generation gives birth to $X_{n+1,i}$ children (the $X_{n,i}$'s are i.i.d., take values in \mathbb{N}, and have common mean $\mu < \infty$).

Assume that $Z_0 = 1$.

Then $\{Z_n/\mu^n\}$ is a martingale w.r.t. $\{\mathcal{A}_n := \sigma(\text{the } X_{m,i}\text{'s, } m \leq n)\}$.

Indeed,

\begin{itemize}
 \item (i), (ii): exercise...
 \item (iii): $E\left[\frac{Z_{n+1}}{\mu^{n+1}} | \mathcal{A}_n\right] = \frac{1}{\mu^{n+1}} E\left[\sum_{i=1}^{Z_n} X_{n+1,i} | \mathcal{A}_n\right] = \frac{1}{\mu^{n+1}} \sum_{i=1}^{Z_n} E[X_{n+1,i} | \mathcal{A}_n] = \frac{Z_0}{\mu^n}$ a.s. for all n.
\end{itemize}

In particular, $E\left[\frac{Z_n}{\mu^n}\right] = E\left[\frac{Z_0}{\mu^0}\right] = 1$. Hence, $E[Z_n] = \mu^n$ for all n.
Consider an urn containing b blue balls and r red ones. Pick randomly some ball in the urn and put it back in the urn with an extra ball of the same color. Repeat this procedure.

This is a so-called contamination process.

Let X_n be the number of red balls in the urn after n steps. Let

$$R_n = \frac{X_n}{b + r + n}$$

be the proportion of red balls in the urn after n steps.

Then $\{R_n\}$ is a martingale w.r.t. $\{X_n\}$.
Example 6: Polya’s urn

Indeed,

- (i) is trivial.
- (ii): $0 \leq |R_n| \leq 1$. Hence, $E[|R_n|] < \infty$.
- (iii): with $A_n := \sigma(X_1, \ldots, X_n)$, we have

\[
E[X_{n+1}|A_n] = (X_n + 1) \frac{X_n}{r + b + n} + (X_n + 0) \left(1 - \frac{X_n}{r + b + n}\right)
\]

\[
= (X_n + 1)X_n + X_n((r + b + n) - X_n)
\]

\[
= \frac{r + b + n + 1)X_n}{r + b + n}
\]

= $(r + b + n + 1)R_n$ a.s. for all n,

so that $E[R_{n+1}|A_n] = R_n$ a.s. for all n.
Outline of the course

1. A short introduction.
2. Basic probability review.
3. Martingales.
 3.1. Definitions and examples.
 3.2. Stopping times and the optional stopping theorem.
 3.3. Sub- and super- martingales, Limiting results.
Let \((Y_n) \) be a martingale w.r.t. \((A_n) \)

Let \(T : (\Omega, A, \mathbb{P}) \rightarrow \overline{\mathbb{N}} := \mathbb{N} \cup \{\infty\} \) be a r.v.

Definition: \(T \) is a stopping time w.r.t. \((A_n) \) ⇔
\((i) \) \(T \) is a.s. finite (i.e., \(\mathbb{P}[T < \infty] = 1 \)).
\((ii) \) \([T = n] \in A_n \) for all \(n \).

Remarks:

- (ii) is the crucial assumption:
 it says that one knows, at time \(n \), on the basis of the “information" \(A_n \), whether \(T = n \) or not, that is, whether one should stop at \(n \) or not.

- (i) just makes (almost) sure that one will stop at some point.
Stopping times (examples)

(Kind of) examples...

Let \((Y_n)\) be a martingale w.r.t. \((\mathcal{A}_n)\). Let \(B \in \mathcal{B}\).

(A) Let \(T := \inf\{n \in \mathbb{N} \mid Y_n \in B\}\) be the time of 1st entry of \((Y_n)\) into \(B\). Then,

\[[T = n] = [Y_0 \notin B, Y_1 \notin B, \ldots, Y_{n-1} \notin B, Y_n \in B] \in \mathcal{A}_n. \]

Hence, provided that \(T\) is a.s. finite, \(T\) is a ST.

(B) Let \(T := \sup\{n \in \mathbb{N} \mid Y_n \in B\}\) be the time of last escape of \((Y_n)\) out of \(B\). Then,

\[[T = n] = [Y_n \in B, Y_{n+1} \notin B, Y_{n+2} \notin B, \ldots] \notin \mathcal{A}_n. \]

Hence, \(T\) is not a ST.
(C) Let $T := k$ a.s. (for some fixed integer k). Then, of course, (i) $T < \infty$ a.s. and (ii)

$$[T = n] = \begin{cases} \emptyset & \text{if } n \neq k \\ \Omega & \text{if } n = k, \end{cases}$$

which is in \mathcal{A}_n for all n. Hence, T is a ST.
Stopping times (properties)

Properties:

- \([T = n] \in \mathcal{A}_n \ \forall n \) \(\overset{(1)}{\iff} \) \([T \leq n] \in \mathcal{A}_n \ \forall n \) \(\overset{(2)}{\iff} \) \([T > n] \in \mathcal{A}_n \ \forall n \).

 Indeed,

 \(\overset{(1)}{\Rightarrow} \) follows from \([T \leq n] = \bigcup_{k=1}^{n} [T = k] \).

 \(\overset{(1)}{\Leftarrow} \) follows from \([T = n] = [T \leq n] \ \backslash [T \leq n - 1] \).

 \(\overset{(2)}{\iff} \) follows from \([T \leq n] = \Omega \ \backslash [T > n] \).

- \(T_1, T_2 \) are ST \(\Rightarrow \) \(T_1 + T_2, \text{max}(T_1, T_2), \text{and} \ \min(T_1, T_2) \) are ST (exercise).

- Let \((Y_n)\) be a martingale w.r.t. \((\mathcal{A}_n)\).

 Let \(T \) be a ST w.r.t. \((\mathcal{A}_n)\).

 Then \(Y_T := \sum_{n=0}^{\infty} Y_n \mathbb{1}_{[T=n]} \) is a r.v.

 Indeed, \([Y_T \in B] = \bigcup_{n=0}^{\infty} \{ [T = n] \ \cap [Y_n \in B] \} \in \mathcal{A} \).
A key lemma:

Lemma: Let \((Y_n)\) be a martingale w.r.t. \((\mathcal{A}_n)\). Let \(T\) be a ST w.r.t. \((\mathcal{A}_n)\). Then \(\{Z_n := Y_{\min(n,T)}\}\) is a martingale w.r.t. \((\mathcal{A}_n)\).

Proof: note that

\[
Z_n = Y_{\min(n,T)} = \sum_{k=0}^{n-1} Y_k \mathbb{I}[T=k] + Y_n \mathbb{I}[T \geq n].
\]

So

- (i): \(Z_n\) is \(\mathcal{A}_n\)-measurable for all \(n\).
- (ii): \(|Z_n| \leq \sum_{k=0}^{n-1} |Y_k| \mathbb{I}[T=k] + |Y_n| \mathbb{I}[T \geq n] \leq \sum_{k=0}^{n} |Y_k|\).

Hence, \(\mathbb{E}[|Z_n|] < \infty\).
(iii): we have

\[
\mathbb{E}[Z_{n+1} | \mathcal{A}_n] - Z_n = \mathbb{E}[Z_{n+1} - Z_n | \mathcal{A}_n] \\
= \mathbb{E}[(Y_{n+1} - Y_n) \mathbb{I}_{[T \geq n+1]} | \mathcal{A}_n] \\
= \mathbb{E}[(Y_{n+1} - Y_n) \mathbb{I}_{[T > n]} | \mathcal{A}_n] \\
= \mathbb{I}_{[T > n]} \mathbb{E}[Y_{n+1} - Y_n | \mathcal{A}_n] \\
= \mathbb{I}_{[T > n]} (\mathbb{E}[Y_{n+1} | \mathcal{A}_n] - Y_n) \\
= 0 \text{ a.s. for all } n,
\]

where we used that \(\mathbb{I}_{[T > n]} \) is \(\mathcal{A}_n \)-measurable. \(\square \)
Corollary: Let \((Y_n)\) be a martingale w.r.t. \((\mathcal{A}_n)\). Let \(T\) be a ST w.r.t. \((\mathcal{A}_n)\). Then \(\mathbb{E}[Y_{\min(n,T)}] = \mathbb{E}[Y_0]\) for all \(n\).

Proof: the lemma and the mean-stationarity of martingales yield \(\mathbb{E}[Y_{\min(n,T)}] = \mathbb{E}[Z_n] = \mathbb{E}[Z_0] = \mathbb{E}[Y_{\min(0,T)}] = \mathbb{E}[Y_0]\) for all \(n\). □

In particular, if the ST is such that \(T \leq k\) a.s. for some \(k\), we have that, for \(n \geq k\),

\[Y_{\min(n,T)} = Y_T \text{ a.s.},\]

so that

\[\mathbb{E}[Y_T] = \mathbb{E}[Y_0].\]
Stopped martingale

\[\mathbb{E}[Y_T] = \mathbb{E}[Y_0] \] does not always hold.

Example: the doubling strategy, for which the winnings are

\[Y_n = \sum_{i=1}^{n} C_i X_i, \]

where the \(X_i \)'s are i.i.d. \(\mathbb{P}[X_i = 1] = \mathbb{P}[X_i = -1] = \frac{1}{2} \) and \(C_i = 2^{i-1} b. \)

The SP \((Y_n) \) is a martingale w.r.t. \((X_n) \) (exercise).

Let \(T = \inf\{n \in \mathbb{N} | X_n = 1\} \) (exercise: \(T \) is a ST).

As we have seen, \(Y_T = b \) a.s., so that \(\mathbb{E}[Y_T] = b \neq 0 = \mathbb{E}[Y_0]. \)

However, as shown by the following result, \(\mathbb{E}[Y_T] = \mathbb{E}[Y_0] \) holds under much broader conditions than "\(T \leq k \) a.s."
Optional stopping theorem

Theorem: Let \((Y_n)\) be a martingale w.r.t. \((A_n)\). Let \(T\) be a ST w.r.t. \((A_n)\). Then if (i) \(\mathbb{E}[|Y_T|] < \infty\) and (ii)
\[
\lim_{n \to \infty} \mathbb{E}[Y_n \mathbb{I}_{[T > n]}] = 0,
\]
we have \(\mathbb{E}[Y_T] = \mathbb{E}[Y_0]\).

Proof: since \(Y_{\min(n,T)} = Y_n \mathbb{I}_{[T > n]} + Y_T \mathbb{I}_{[T \leq n]}\), we have
\[
Y_T = Y_T \mathbb{I}_{[T \leq n]} + Y_T \mathbb{I}_{[T > n]} = (Y_{\min(n,T)} - Y_n \mathbb{I}_{[T > n]}) + Y_T \mathbb{I}_{[T > n]}.
\]
Taking expectations, we obtain
\[
\mathbb{E}[Y_T] = \mathbb{E}[Y_0] - \mathbb{E}[Y_n \mathbb{I}_{[T > n]}] + \mathbb{E}[Y_T \mathbb{I}_{[T > n]}].
\]
By taking the limit as \(n \to \infty\) and using (ii),
\[
\mathbb{E}[Y_T] = \mathbb{E}[Y_0] + \lim_{n \to \infty} \mathbb{E}[Y_T \mathbb{I}_{[T > n]}].
\]
The result follows from \(\lim_{n \to \infty} \mathbb{P}[T > n] = \mathbb{P}[T = \infty] = 0\). \(\square\)
Optional stopping theorem

Theorem: Let \((Y_n)\) be a martingale w.r.t. \((\mathcal{A}_n)\). Let \(T\) be a ST w.r.t. \((\mathcal{A}_n)\). Then if (i) \(\mathbb{E}[|Y_T|] < \infty\) and (ii) \(\lim_{n \to \infty} \mathbb{E}[Y_n \mathbb{I}_{[T > n]}] = 0\), we have \(\mathbb{E}[Y_T] = \mathbb{E}[Y_0]\).

Particular sufficient conditions for (i), (ii):

- (a) \(T \leq k\) a.s. Indeed,

 (i) \(\mathbb{E}[|Y_T|] = \mathbb{E}[|\sum_{n=0}^{k} Y_n \mathbb{I}_{[T=n]}|] \leq \sum_{n=0}^{k} \mathbb{E}[|Y_n|] < \infty\).

 (ii) \(Y_n \mathbb{I}_{[T > n]} = 0\) a.s. for \(n > k\). Hence, \(\mathbb{E}[Y_n \mathbb{I}_{[T > n]}] = 0\) for \(n > k\), so that (ii) holds.

- (b) \((Y_n)\) is uniformly integrable.
Optional stopping theorem (examples)

Let X_1, X_2, \ldots be i.i.d., with $\mathbb{P}[X_i = 1] = p$ and $\mathbb{P}[X_i = -1] = q = 1 - p$.

Let $Y_0 := k \in \{1, 2, \ldots, m - 1\}$ be the initial state.

Let $Y_{n+1} := (Y_n + X_{n+1}) \mathbb{I}_{[Y_n \not\in \{0, m\}]} + Y_n \mathbb{I}_{[Y_n \in \{0, m\}]}$.

\leadsto The SP (Y_n) is called a random walk with absorbing barriers.

In the symmetric case, (Y_n) is a martingale w.r.t. (X_n) (exercise).

Let $T := \inf\{n \in \mathbb{N} | Y_n \in \{0, m\}\}$ (exercise: T is a stopping time, and the assumptions of the optional stopping thm are satisfied).

$\leadsto \mathbb{E}[Y_T] = \mathbb{E}[Y_0]$.
Optional stopping theorem (examples)

Let \(p_k := \mathbb{P}[Y_T = 0] \).

Then
\[
\mathbb{E}[Y_T] = 0 \times p_k + m \times (1 - p_k)
\]
and
\[
\mathbb{E}[Y_0] = \mathbb{E}[k] = k,
\]
so that \(\mathbb{E}[Y_T] = \mathbb{E}[Y_0] \) yields
\[
m(1 - p_k) = k,
\]
that is, solving for \(p_k \),
\[
p_k = \frac{m - k}{m}.
\]
Optional stopping theorem (examples)

Is there a way to get $\mathbb{E}[T]$ (still in the symmetric case)?

We know that $(S_n := Y_n^2 - n)$ is also a martingale w.r.t. (X_n) (exercise: with this martingale and the same ST, the assumptions of the optional stopping theorem are still satisfied).

$\sim \mathbb{E}[S_T] = \mathbb{E}[S_0], \text{where}$

\[\mathbb{E}[S_T] = \mathbb{E}[Y_T^2] - \mathbb{E}[T] = \left(0^2 \times p_k + m^2 \times (1 - p_k)\right) - \mathbb{E}[T] \]

and

\[\mathbb{E}[S_0] = \mathbb{E}[Y_0^2 - 0] = \mathbb{E}[k^2] = k^2. \]

Hence,

\[\mathbb{E}[T] = m^2(1 - p_k) - k^2 = m^2 \times \frac{k}{m} - k^2 = k(m - k). \]
Optional stopping theorem (examples)

Let X_1, X_2, \ldots be i.i.d., with $\mathbb{P}[X_i = 1] = p$ and $\mathbb{P}[X_i = -1] = q = 1 - p$.
Let $Y_0 := k \in \{1, 2, \ldots, m - 1\}$ be the initial state.
Let $Y_{n+1} := (Y_n + X_{n+1}) \mathbb{I}[Y_n \notin \{0, m\}] + Y_n \mathbb{I}[Y_n \in \{0, m\}]$.

\sim The SP (Y_n) is called a random walk with absorbing barriers.

In the non-symmetric case, $\left(S_n := \left(\frac{q}{p}\right)^{Y_n}\right)$ is a martingale w.r.t. (X_n). Let $T := \inf\{n \in \mathbb{N}|S_n \in \{0, m\}\}$ (exercise: T is a stopping time, and the assumptions of the optional stopping thm are satisfied). $\sim \mathbb{E}[S_T] = \mathbb{E}[S_0]$.
Let again $p_k := \mathbb{P}[Y_T = 0]$. Then, since

$$\mathbb{E}[S_T] = \mathbb{E} \left[\left(\frac{q}{p} \right)^{Y_T} \right] = \left(\frac{q}{p} \right)^0 \times p_k + \left(\frac{q}{p} \right)^m (1 - p_k),$$

and

$$\mathbb{E}[S_0] = \mathbb{E} \left[\left(\frac{q}{p} \right)^{Y_0} \right] = \mathbb{E} \left[\left(\frac{q}{p} \right)^k \right] = \left(\frac{q}{p} \right)^k,$$

we deduce that

$$\left(\frac{q}{p} \right)^0 \times p_k + \left(\frac{q}{p} \right)^m (1 - p_k) = \left(\frac{q}{p} \right)^k,$$

that is, solving for p_k,

$$p_k = \frac{\left(\frac{q}{p} \right)^k - \left(\frac{q}{p} \right)^m}{1 - \left(\frac{q}{p} \right)^m}.$$
Optional stopping theorem (examples)

Is there a way to get \(\mathbb{E}[T] \) here as well?

In the non-symmetric case, \((R_n := Y_n - \min(n, T)(p - q)) \) is a martingale w.r.t. \((X_n) \) (exercise: check this, and check that the optional stopping thm applies with \((R_n) \) and \(T \)).

\[
\sim \quad \mathbb{E}[R_T] = \mathbb{E}[R_0], \quad \text{where}
\]

\[
\mathbb{E}[R_T] = \mathbb{E}[Y_T - T(p-q)] = \mathbb{E}[Y_T] - (p-q)\mathbb{E}[T] = \left(0 \times p_k + m \times (1-p_k)\right) \quad \text{and}
\]

\[
\mathbb{E}[R_0] = \mathbb{E}[Y_0 - \min(0, T)(p-q)] = \mathbb{E}[Y_0] = \mathbb{E}[k] = k.
\]

Hence,

\[
\mathbb{E}[T] = \frac{m(1-p_k) - k}{p-q} = \frac{m\left(1 - \left(\frac{q}{p}\right)^k\right) - k\left(1 - \left(\frac{q}{p}\right)^m\right)}{(p-q)\left(1 - \left(\frac{q}{p}\right)^m\right)}.
\]
Outline of the course

1. A short introduction.
2. Basic probability review.
3. Martingales.
 3.1. Definitions and examples.
 3.2. Stopping times and the optional stopping theorem.
 3.3. Sub- and super- martingales, Limiting results.
Sub- and super-martingales

Not every game is fair...
There are also favourable and defavourable games.

Therefore, we introduce the following concepts:

The SP \((Y_n)_{n \in \mathbb{N}}\) is a submartingale w.r.t. the filtration \((\mathcal{A}_n)_{n \in \mathbb{N}}\) ⇔

- (i) \((Y_n)_{n \in \mathbb{N}}\) is adapted to the filtration \((\mathcal{A}_n)_{n \in \mathbb{N}}\).
- (ii)' \(\mathbb{E}[Y_n^+] < \infty\) for all \(n\).
- (iii)' \(\mathbb{E}[Y_{n+1} | \mathcal{A}_n] \geq Y_n\) a.s. for all \(n\).

The SP \((Y_n)_{n \in \mathbb{N}}\) is a supermartingale w.r.t. the filtration \((\mathcal{A}_n)_{n \in \mathbb{N}}\) ⇔

- (i) \((Y_n)_{n \in \mathbb{N}}\) is adapted to the filtration \((\mathcal{A}_n)_{n \in \mathbb{N}}\).
- (ii)" \(\mathbb{E}[Y_n^-] < \infty\) for all \(n\).
- (iii)" \(\mathbb{E}[Y_{n+1} | \mathcal{A}_n] \leq Y_n\) a.s. for all \(n\).
Sub- and super-martingales

Remarks:

- (iii)' shows that a submartingale can be thought of as the fortune of a gambler betting on a favourable game.

 \[(iii)' \implies \mathbb{E}[Y_n] \geq \mathbb{E}[Y_0] \text{ for all } n.\]

- (iii)” shows that a supermartingale can be thought of as the fortune of a gambler betting on a defavourable game.

 \[(iii)” \implies \mathbb{E}[Y_n] \leq \mathbb{E}[Y_0] \text{ for all } n.\]

- \((Y_n)\) is a submartingale w.r.t. \((\mathcal{A}_n)\)
 \[\iff (−Y_n) \text{ is a supermartingale w.r.t. } (\mathcal{A}_n).\]

- \((Y_n)\) is a martingale w.r.t. \((\mathcal{A}_n)\)
 \[\iff (Y_n) \text{ is both a sub- and a supermartingale w.r.t. } (\mathcal{A}_n).\]
Consider the following strategy for the fair version of roulette (without the "0" slot):

Bet b euros on an even result. If you win, stop. If you lose, bet $2b$ euros on an even result. If you win, stop. If you lose, bet $4b$ euros on an even result. If you win, stop... And so on...

How good is this strategy?

(a) If you first win in the nth game, your total winning is

$$-\sum_{i=0}^{n-2} 2^i b + 2^{n-1} b = b$$

⇒ Whatever the value of n is, you win b euros with this strategy.
(b) You will a.s. win. Indeed, let T be the time index of first success. Then

$$\mathbb{P}[T < \infty] = \sum_{n=1}^{\infty} \mathbb{P}[n - 1 \text{ first results are "odd", then "even"}].$$

But

\[
\begin{align*}
\sum_{n=1}^{\infty} \left(\frac{1}{2} \right)^{n-1} \frac{1}{2} &= \sum_{n=1}^{\infty} \left(\frac{1}{2} \right)^{n} = 1.
\end{align*}
\]

(c) The expected amount you lose just before you win is

\[
0 \times \frac{1}{2} + b \times \left(\frac{1}{2} \right)^{2} + (b+2b) \times \left(\frac{1}{2} \right)^{3} + \ldots + \left(\sum_{i=0}^{n-2} 2^{i} b \right) \left(\frac{1}{2} \right)^{n} + \ldots = \infty
\]

\Rightarrow Your expected loss is infinite!

(d) You need an unbounded wallet...
Let us try to formalize strategies...

Consider the SP $(X_n)_{n \in \mathbb{N}}$, where X_n is your winning per unit stake in game n. Denote by $(A_n)_{n \in \mathbb{N}}$ the corresponding filtration $(A_n = \sigma(X_1, \ldots, X_n))$.

Definition: A gambling strategy (w.r.t. (X_n)) is a SP $(C_n)_{n \in \mathbb{N}}$ such that C_n is A_{n-1}-measurable for all n.

Remarks:
- $C_n = C_n(X_1, \ldots, X_{n-1})$ is what you will bet in game n.
- $A_0 = \{\emptyset, \Omega\}$.
Sub- and super-martingales

Using some strategy \((C_n)\), your total winning after \(n\) games is

\[
Y_n^{(C)} = \sum_{i=1}^{n} C_i X_i.
\]

A natural question:
Is there any way to choose \((C_n)\) so that \((Y_n^{(C)})\) is "nice"?

Consider the "blind" strategy \(C_n = 1\) (for all \(n\)), that consists in betting 1 euro in each game, and denote by \((Y_n = \sum_{i=1}^{n} X_i)\) the corresponding process of winnings.

Then, here is the answer:

Theorem: Let \((C_n)\) be a gambling strategy with nonnegative and bounded r.v.'s. Then if \((Y_n)\) is a martingale, so is \((Y_n^{(C)})\). If \((Y_n)\) is a submart., so is \((Y_n^{(C)})\). And if \((Y_n)\) is a supermart., so is \((Y_n^{(C)})\).
Sub- and super-martingales

Proof:

- (i) is trivial.
- (ii): $|Y_n^{(C)}| \leq \sum_{i=1}^{n} a_i |X_i|$. Hence, $\mathbb{E}[|Y_n^{(C)}|] < \infty$.
- (iii),(iii)',(iii)”: with $\mathcal{A}_n := \sigma(X_1, \ldots, X_n)$, we have
 \[
 \mathbb{E}[Y_{n+1}^{(C)}|\mathcal{A}_n] = \mathbb{E}[Y_n^{(C)} + C_{n+1}X_{n+1}|\mathcal{A}_n]
 = Y_n^{(C)} + C_{n+1} \mathbb{E}[X_{n+1}|\mathcal{A}_n]
 = Y_n^{(C)} + C_{n+1} \mathbb{E}[Y_{n+1} - Y_n|\mathcal{A}_n]
 = Y_n^{(C)} + C_{n+1} \left(\mathbb{E}[Y_{n+1}|\mathcal{A}_n] - Y_n \right),
 \]
 where we used that C_{n+1} is \mathcal{A}_n-measurable. Since $C_{n+1} \geq 0$, the result follows.

Remark: The second part was checked for martingales only.
Exercise: check (ii)' and (ii)"...
Convergence of martingales

Theorem: let \((Y_n)\) be a submartingale w.r.t. \((\mathcal{A}_n)\). Assume that, for some \(M\), \(\mathbb{E}[Y_n^+] \leq M\) for all \(n\). Then

(i) \(\exists Y_\infty\) such that \(Y_n \xrightarrow{a.s.} Y_\infty\) as \(n \to \infty\).

(ii) If \(\mathbb{E}[|Y_0|] < \infty\), \(\mathbb{E}[|Y_\infty|] < \infty\).

The following results directly follow:

Corollary 1: let \((Y_n)\) be a submartingale or a supermartingale w.r.t. \((\mathcal{A}_n)\). Assume that, for some \(M\), \(\mathbb{E}[|Y_n|] \leq M\) for all \(n\). Then \(\exists Y_\infty\) (satisfying \(\mathbb{E}[|Y_\infty|] < \infty\)) such that \(Y_n \xrightarrow{a.s.} Y_\infty\) as \(n \to \infty\).

Corollary 2: let \((Y_n)\) be a negative submartingale or a positive supermartingale w.r.t. \((\mathcal{A}_n)\). Then \(\exists Y_\infty\) such that \(Y_n \xrightarrow{a.s.} Y_\infty\) as \(n \to \infty\).
Example: products of r.v.’s

Let X_1, X_2, \ldots be i.i.d. r.v.’s, with common distribution

<table>
<thead>
<tr>
<th>distribution of X_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>values</td>
</tr>
<tr>
<td>probabilities</td>
</tr>
</tbody>
</table>

The X_i’s are integrable r.v.’s with common mean 1, so that $(Y_n = \prod_{i=1}^{n} X_i)$ is a (positive) martingale w.r.t. (X_n) (example 2 in the previous lecture).

Consequently, $\exists Y_\infty$ such that $Y_n \xrightarrow{a.s.} Y_\infty$ as $n \to \infty$.

We showed, in Lecture #4, that $Y_n \xrightarrow{P} 0$ as $n \to \infty$ so that $Y_\infty = 0$ a.s.

But we also showed there that convergence in L^1 does not hold. To ensure L^1-convergence, one has to require uniform integrability of (Y_n).
Example: Polya’s urn

Consider an urn containing b blue balls and r red ones. Pick randomly some ball in the urn and put it back in the urn with an extra ball of the same color. Repeat this procedure.

Let X_n be the number of red balls in the urn after n steps. Let $R_n = \frac{X_n}{b + r + n}$ be the proportion of red balls after n steps.

We know that (R_n) is a martingale w.r.t. (X_n).

Now, $|R_n| \leq 1 \Rightarrow \mathbb{E}[|R_n|] \leq 1$, so that $\exists R_\infty$ (satisfying $\mathbb{E}[|R_\infty|] < \infty$) such that $R_n \xrightarrow{a.s.} R_\infty$ as $n \to \infty$.

Clearly, uniform integrability holds. Hence, $R_n \xrightarrow{L^1} R_\infty$ as $n \to \infty$.

Remark: it can be shown that R_∞ has a beta distribution:

$$
\mathbb{P}[R_\infty \leq u] = \binom{b + r}{r} \int_0^u x^{r-1}(1 - x)^{b-1} \, dx, \quad u \in (0, 1).
$$
Example: branching processes

Consider some population, in which each individual i of the Z_n individuals in the nth generation gives birth to $X_{n,i}$ children (the $X_{n,i}$’s are i.i.d., take values in \mathbb{N}, and have common mean $\mu < \infty$).

Assume that $Z_0 = 1$.

Then $(Y_n := Z_n/\mu^n)$ is a martingale w.r.t. $(\mathcal{A}_n := \sigma(X_{n,i}, n \text{ fixed}))$.

What can be said about the long-run state?

$\mathbb{E}[|Y_n|] = \mathbb{E}[Y_0] = 1$ for all $n \Rightarrow \exists Y_\infty$ (satisfying $\mathbb{E}[|Y_\infty|] < \infty$) such that $Y_n \overset{a.s.}{\rightarrow} Y_\infty$ as $n \rightarrow \infty$.

$\sim Z_n \approx Y_\infty \mu^n$ for large n.
Example: branching processes

Case 1: \(\mu \leq 1 \).

If \(p_0 := \mathbb{P}[X_{n,i} = 0] > 0 \), \(Z_n \xrightarrow{a.s.} Z_\infty := 0 \) as \(n \to \infty \).

Proof:

Let \(k \in \mathbb{N}_0 \). Then

\[
\mathbb{P}[Z_\infty = k] = \mathbb{P}[Z_n = k \ \forall n \geq n_0] = \mathbb{P}[Z_{n_0} = k] \left(\mathbb{P}[Z_{n_0 + 1} = k | Z_{n_0} = k] \right)^\infty
\]

where

\[
\mathbb{P}[Z_{n_0 + 1} = k | Z_{n_0} = k] \leq \mathbb{P}[Z_{n_0 + 1} \neq 0 | Z_{n_0} = k] = 1 - (p_0)^k < 1.
\]

Therefore, \(\mathbb{P}[Z_\infty = k] = 0 \) for all \(k \in \mathbb{N}_0 \), so that \(Z_\infty = 0 \) a.s. \(\square \)
Example: branching processes

Case 2: \(\mu > 1 \).

Then \(Z_n \xrightarrow{a.s.} Z_\infty \) as \(n \to \infty \), where the distribution of \(Z_\infty \) is given by

<table>
<thead>
<tr>
<th>distribution of (Z_\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>values</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>(\infty)</td>
</tr>
<tr>
<td>probabilities</td>
</tr>
<tr>
<td>(\pi)</td>
</tr>
<tr>
<td>(1 - \pi)</td>
</tr>
</tbody>
</table>

where \(\pi \in (0, 1) \) is the unique solution of \(g(s) = s \), where, defining \(p_k := \mathbb{P}[X_{n,i} = k] \), we let \(g(s) := \sum_{k=0}^{\infty} p_k s^k \).

Proof:

Clearly, since \(Z_n \approx Y_\infty \mu^n \) for large \(n \), \(Z_n \xrightarrow{a.s.} Z_\infty \) as \(n \to \infty \), where \(Z_\infty \) only assumes the values 0 and \(\infty \), with proba \(a \) and 1 – \(a \), respectively, say.

We may assume that \(p_0 > 0 \) (clearly, if \(p_0 = 0 \), \(Z_\infty = \infty \) a.s.)
Example: branching processes

There is indeed a unique \(\pi \in (0, 1) \) such that \(g(\pi) = \pi \), since \(g \) is monotone increasing, \(g(0) = \rho_0 > 0 \), and \(g'(1) = \mu > 1 \).

\(\sim (\pi Z_n) \) is a martingale w.r.t. \((A_n) \), since

\[
\mathbb{E}[\pi Z_{n+1} | A_n] = \mathbb{E}[\pi \sum_{i=1}^{Z_n} X_{n+1,i} | A_n] = (\mathbb{E}[\pi X_{n+1,1} | A_n])^{Z_n} \\
= (\mathbb{E}[\pi X_{n+1,1}])^{Z_n} = \left(\sum_{k=0}^{\infty} \pi^k p_k \right)^{Z_n} = (g(\pi))^{Z_n} = \pi^{Z_n}
\]
a.s. for all \(n \).

\((\pi Z_n) \) is also uniformly integrable, so that \(\pi Z_n \overset{L^1}{\to} \pi Z_\infty \) as \(n \to \infty \). Therefore, \(\mathbb{E}[\pi Z_\infty] = \pi^0 \times a + \pi^\infty \times (1 - a) = a \) is equal to \(\mathbb{E}[\pi Z_0] = \mathbb{E}[\pi^1] = \pi \).

Hence, \(\mathbb{P}[Z_\infty = 0] = \pi \) and \(\mathbb{P}[Z_\infty = \infty] = 1 - \pi \). \(\square \)
Outline of the course

1. A short introduction.
2. Basic probability review.
3. Martingales.
 4.1. Definitions and examples.
 4.2. Strong Markov property, number of visits.
 4.3. Classification of states.
 4.4. Computation of \(R \) and \(F \).
 4.5. Asymptotic behavior.
Markov chains

The importance of these processes comes from two facts:

- there is a large number of physical, biological, economic, and social phenomena that can be described in this way, and
- there is a well-developed theory that allows for doing the computations and obtaining explicit results...
Definitions and examples

Let S be a finite or countable set (number its elements using $i = 1, 2, \ldots$).

Let $(X_n)_{n \in \mathbb{N}}$ be a SP with $X_n : (\Omega, \mathcal{A}, P) \to S$ for all n.

Definition: (X_n) is a Markov chain (MC) on S ⇔

$$
\mathbb{P}[X_{n+1} = j | X_0, X_1, \ldots, X_n] = \mathbb{P}[X_{n+1} = j | X_n] \quad \forall n \forall j.
$$

Remarks:

- The equation above is the so-called Markov property. It states that the future does only depend on the present state of the process, and not on its past.

- S is the state space.

- The elements of S are the states.
Definitions and examples

Definition: The MC \((X_n)\) is **homogeneous** \((\sim \text{HMC})\) \iff

\[P[X_{n+1} = j | X_n = i] = P[X_1 = j | X_0 = i] \quad \forall n \forall i, j. \]

For a HMC, one can define the **transition probabilities**

\[p_{ij} = P[X_{n+1} = j | X_n = i] \quad \forall i, j, \]

which are usually collected in the transition matrix \(P = (p_{ij})\).

The transition matrix \(P\) is a "stochastic matrix", which means that

- \(p_{ij} \in [0, 1]\) for all \(i, j\).
- \(\sum_j p_{ij} = 1\) for all \(i\).

In vector notation, \(P1 = 1\), where 1 stands for the vector of ones with the appropriate dimension.
Example 1: random walk

Let X_1, X_2, \ldots be i.i.d., with $\mathbb{P}[X_i = 1] = p$ and $\mathbb{P}[X_i = -1] = q = 1 - p$.

Let $Y_i := \sum_{i=1}^{n} X_i$ be the corresponding random walk.

(Y_n) is a HMC on $S = \mathbb{Z}$ with transition matrix

$$P = \begin{pmatrix} \ddots & \ddots & \ddots & \ddots & \ddots \\ \ddots & q & 0 & p & \ddots \\ \ddots & q & 0 & p & 0 \\ \ddots & q & 0 & p & 0 \\ & \ddots & q & 0 & \ddots \end{pmatrix}.$$
Example 2: rw with absorbing barriers

Let X_1, X_2, \ldots be i.i.d., with $\mathbb{P}[X_i = 1] = p$ and $\mathbb{P}[X_i = -1] = q = 1 - p$.

Let $Y_0 := k \in \{1, 2, \ldots, m - 1\}$ be the initial state.

Let $Y_{n+1} := (Y_n + X_{n+1}) \mathbb{1}[Y_n \notin \{0, m\}] + Y_n \mathbb{1}[Y_n \in \{0, m\}]$.

(Y_n) is a HMC on $S = \{0, 1, \ldots, m\}$ with transition matrix

$$P = \begin{pmatrix}
1 & 0 & 0 & \cdots & 0 \\
q & 0 & p & \cdots & 0 \\
q & 0 & 0 & \cdots & p \\
\vdots & \ddots & \ddots & \ddots & \ddots \\
q & 0 & 0 & \cdots & 1
\end{pmatrix}.$$
Let X_1, X_2, \ldots be i.i.d., with $\mathbb{P}[X_i = 1] = p$ and $\mathbb{P}[X_i = 0] = q = 1 - p$.

Let $Y_0 := 0$ be the initial state.

Let $Y_{n+1} := (Y_n + 1) \mathbb{I}[X_{n+1} = 1] + 0 \times \mathbb{I}[X_{n+1} = 0]$.

$\sim (Y_n)$ is a HMC on $S = \mathbb{N}$ with transition matrix

$$P = \begin{pmatrix}
q & p & 0 & 0 & \cdots & 0 \\
q & 0 & p & 0 & \cdots & 0 \\
q & 0 & 0 & p & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
q & 0 & 0 & 0 & \cdots & 0 \\
q & 0 & 0 & 0 & \cdots & 0
\end{pmatrix}.$$
Example 4: discrete queue models

Let Y_n be the number of clients in a queue at time n ($Y_0 = 0$). Let X_n be the number of clients entering the shop between time $n - 1$ and n (X_n i.i.d., with $\mathbb{P}[X_n = i] = p_i; \sum_{i=0}^{\infty} p_i = 1$). Assume a service needs exactly one unit of time to be completed.

Then

$$Y_{n+1} = (Y_n + X_n - 1) \mathbb{I}[Y_n > 0] + X_n \mathbb{I}[Y_n = 0],$$

and (Y_n) is a HMC on $S = \mathbb{N}$ with transition matrix

$$P = \begin{pmatrix} p_0 & p_1 & p_2 & \cdots \\ p_0 & p_1 & p_2 & \cdots \\ \vdots & \vdots & \vdots & \ddots \\ p_0 & p_1 & p_2 & \cdots \end{pmatrix}.$$
Example 5: stock management

Let X_n be the number of units on hand at the end of day n ($X_0 = M$).
Let D_n be the demand on day n (D_n i.i.d., $\mathbb{P}[D_n = i] = p_i$; $\sum_{i=0}^{\infty} p_i = 1$).
Assume that if $X_n \leq m$, it is (instantaneously) set to M again.

Then, letting $x^+ = \max(x, 0)$, we have

$$X_{n+1} = (X_n - D_{n+1})^+ \mathbb{I}[X_n > m] + (M - D_{n+1})^+ \mathbb{I}[X_n \leq m],$$

and (X_n) is a HMC on $S = \{0, 1, \ldots, M\}$ (exercise: derive P).

Questions:

- if we make 12$ profit on each unit sold but it costs 2$ a day to store items, what is the long-run profit per day of this inventory policy?
- How to choose (m, M) to maximize profit?
Example 6: income classes

Assume that from one generation to the next, families change their income group "Low", "Middle", or "High" (state 1,2, and 3, respectively) according to a HMC with transition matrix

\[P = \begin{pmatrix} .6 & .3 & .1 \\ .1 & .7 & .1 \\ .1 & .3 & .6 \end{pmatrix}. \]

Questions:

- Do the fractions of the population in the three income classes stabilize as time goes on?
- If this happens, how can we compute the limiting proportions from \(P \)?
Higher-order transition probabilities

We let \(P = (p_{ij}) \), where \(p_{ij} = \mathbb{P}[X_1 = j | X_0 = i] \).
Now, define \(P^{(n)} = (p^{(n)}_{ij}) \), where \(p^{(n)}_{ij} = \mathbb{P}[X_n = j | X_0 = i] \).

What is the link between \(P \) and \(P^{(n)} \)?

\[\blacktriangleright \textbf{Theorem}: P^{(n)} = P^n. \]

Proof: the result holds for \(n = 1 \). Now, assume it holds for \(n \).
Then \((P^{(n+1)})_{ij} = \mathbb{P}[X_{n+1} = j | X_0 = i] = \sum_k \mathbb{P}[X_{n+1} = j, X_n = k | X_0 = i] = \sum_k \mathbb{P}[X_{n+1} = j | X_n = k, X_0 = i] \mathbb{P}[X_n = k | X_0 = i] = \sum_k (P^{(n)})_{ik} (P^{(1)})_{kj} = (P^{(n)} P)_{ij} = (P^n P)_{ij} = (P^{n+1})_{ij} \), so that the result holds for \(n + 1 \) as well. \[\square \]
Of course, this implies that
\[P^{(n+m)} = P^{n+m} = P^n P^m = P^{(n)} P^{(m)}, \]
that is,

\[P[X_{n+m} = j | X_0 = i] = \sum_k P[X_n = k | X_0 = i] P[X_m = j | X_0 = k], \]

which are the so-called Chapman-Kolmogorov equations.
Higher-order transition probabilities

Clearly, the distribution of X_n is of primary interest.

Let $a^{(n)}$ be the (line) vector with jth component
$$(a^{(n)})_j = \mathbb{P}[X_n = j].$$

\(\iff\) \textbf{Theorem:} $a^{(n)} = a^{(0)} P^n$.

\textbf{Proof:} using the total probability formula, we obtain
$$(a^{(n)})_j = \mathbb{P}[X_n = j] = \sum_k \mathbb{P}[X_n = j \mid X_0 = k] \mathbb{P}[X_0 = k] = \sum_k (a^{(0)})_k (P^{(n)})_{kj} = (a^{(0)} P^{(n)})_j = (a^{(0)} P^n)_j,$$
which establishes the result. \(\square\)

This shows that one can very easily compute the distribution of X_n in terms of

- the distribution of X_0, and
- the transition matrix P.

Higher-order transition probabilities

Proposition: let \((X_n)\) be a HMC on \(S\). Then

\[
P[X_1 = i_1, X_2 = i_2, \ldots, X_n = i_n | X_0 = i_0],
\]

\[
P[X_{m+1} = i_1, X_{m+2} = i_2, \ldots, X_{m+n} = i_n | X_m = i_0],
\]

and

\[
P[X_{m+1} = i_1, X_{m+2} = i_2, \ldots, X_{m+n} = i_n | X_0 = j_0, X_1 = j_1, \ldots, X_m = i_0]
\]

all are equal to \(p_{i_0i_1}p_{i_1i_2} \cdots p_{i_{n-1}i_n}\).

Proof: exercise...