Stochastic Processes (Lecture #6)

Thomas Verdebout

Université Libre de Bruxelles

Outline of the course

- 1. A short introduction.
- 2. Basic probability review.
- 3. Martingales.
- 4. Markov chains.
 - 4.1. Definitions and examples.
 - 4.2. Strong Markov property, number of visits.
 - 4.3. Classification of states.
 - 4.4. Computation of *R* and *F*.
 - 4.5. Asymptotic behavior.
- 5. Markov processes, Poisson processes.
- 6. Brownian motions.

Strong Markov property

Quite similarly as for the optional stopping theorem for martingales, $\mathbb{P}[X_{n+1} = j | X_n = i] = p_{ij}$ does also hold at stopping times *T*. This is the so-called "strong Markov property" (SMP).

An illustration: for 0 < p, q < 1 (p + q = 1), consider the HMC with graph Let *T* be the time of first visit in $2 \rightsquigarrow \mathbb{P}[X_{T+1} = 1 | X_T = 2] = q(= p_{21})$.

Let *T* be the time of last visit in $2 \rightsquigarrow \mathbb{P}[X_{T+1} = 1 | X_T = 2] = q^{\infty} = 0$ ($\neq p_{21}$), which shows that the SMP may be violated if *T* is not a ST.

Numbers of visits

Of particular interest is also the total number of visits in *j*, that is $N_j = \sum_{n=0}^{\infty} I_{[X_n=j]}$.

To determine the distribution of N_i , let

T_j = inf{*n* ∈ N₀|*X_n* = *j*}, which is the time of first visit in *j* (if *X*₀ ≠ *j*) or of first return to *j* (if *X*₀ = *j*), and
 f_{ij} = ℙ[*T_i* < ∞|*X*₀ = *i*].

Let θ_k be the time of *k*th visit of the chain in *j* (if there are only *k* visits in *j*, we let $\theta_{\ell} = \infty$ for all $\ell \ge k + 1$ and $\theta_{\ell+1} - \theta_{\ell} = \infty$ for all $\ell \ge k$).

Then, for
$$k = 1, 2, ...,$$

 $\mathbb{P}[N_j = k | X_0 = i]$
 $= \mathbb{P}[\theta_1 < \infty, ..., \theta_k < \infty, \theta_{k+1} = \infty | X_0 = i]$

 $= \mathbb{P}[\theta_1 < \infty | X_0 = i] \dots \mathbb{P}[\theta_{k+1} = \infty | \theta_1 < \infty, ..., \theta_k < \infty, X_0 = i]$

 $= \mathbb{P}[\theta_1 < \infty | X_0 = i] (\mathbb{P}[\theta_1 < \infty | X_0 = j])^{k-1} \mathbb{P}[\theta_1 = \infty | X_0 = j]$

$$= f_{ij}f_{jj}^{k-1}(1-f_{jj}).$$

Numbers of visits

Working similarly, one shows that

$$\mathbb{P}[N_j = k | X_0 = i] = \begin{cases} f_{ij} f_{jj}^{k-1} (1 - f_{jj}) & \text{if } k > 0\\ 1 - f_{ij} & \text{if } k = 0 \end{cases}$$

for
$$i \neq j$$
, and $\mathbb{P}[N_j = k | X_0 = j] = f_{jj}^{k-1}(1 - f_{jj}), \quad k > 0.$

Hence, letting $r_{ij} = E[N_j | X_0 = i]$ be the expected number of visits in *j* when starting from *i*, we have, for $i \neq j$,

$$r_{ij} = \sum_{k=0}^{\infty} k \mathbb{P}[N_j = k | X_0 = i] = f_{ij}(1 - f_{jj}) \sum_{k=1}^{\infty} k f_{jj}^{k-1} = \frac{f_{ij}}{1 - f_{jj}}$$

$$r_{jj} = \sum_{k=0}^{\infty} k \mathbb{P}[N_j = k | X_0 = j] = (1 - f_{jj}) \sum_{k=1}^{\infty} k f_{jj}^{k-1} = \frac{1}{1 - f_{jj}}.$$

Numbers of visits

Similarly as for the transition probabilities p_{ij} , the $r_{ij} = \mathbb{E}[N_j | X_0 = i]$ will be collected in some matrix $R = (r_{ij})$.

Note that

$$r_{ij} = \mathbb{E}\Big[\sum_{n=0}^{\infty} I_{[X_n=j]} | X_0 = i\Big] = \sum_{n=0}^{\infty} \mathbb{E}[I_{[X_n=j]} | X_0 = i]$$
$$= \sum_{n=0}^{\infty} \mathbb{P}[X_n = j | X_0 = i] = \sum_{n=0}^{\infty} \rho_{ij}^{(n)} = \sum_{n=0}^{\infty} (P^n)_{ij},$$

which shows that

$$R=\sum_{n=0}^{\infty}P^n.$$

Outline of the course

- 1. A short introduction.
- 2. Basic probability review.
- 3. Martingales.
- 4. Markov chains.
 - 4.1. Definitions and examples.
 - 4.2. Strong Markov property, number of visits.

4.3. Classification of states.

- 4.4. Computation of *R* and *F*.
- 4.5. Asymptotic behavior.
- 5. Markov processes, Poisson processes.
- 6. Brownian motions.

Classification of states

Definition:

- the state *j* is transient $\Leftrightarrow f_{jj} < 1$.
- the state *j* is recurrent $\Leftrightarrow f_{jj} = 1$.

Remarks:

- ▶ *j* transient \Leftrightarrow *r*_{*jj*} < ∞; *j* recurrent \Leftrightarrow *r*_{*jj*} = ∞.
- ► *j* transient $\Rightarrow \mathbb{P}[T_j = \infty | X_0 = j] > 0 \Rightarrow \mathbb{E}[T_j | X_0 = j] = \infty.$
- j recurrent ⇒ P[T_j = ∞|X₀ = j] = 0, but E[T_j|X₀ = j] can be finite or infinite...
- \rightsquigarrow Definition:
 - j is positive-recurrent ⇔
 - *j* is recurrent and $\mathbb{E}[T_j|X_0 = j] < \infty$.
 - ▶ *j* is null-recurrent \Leftrightarrow *j* is recurrent and $\mathbb{E}[T_j|X_0 = j] = \infty$.

Classification of states

Definition:

j is accessible from *i* (not. $i \rightarrow j$) $\Leftrightarrow \exists n \in \mathbb{N}$ such that $p_{ij}^{(n)} > 0$ (that is, there is some path, from *i* to *j*, in the graph of the HMC).

Letting $\alpha_{ij} = \mathbb{P}[\text{go to } j \text{ before coming back to } i | X_0 = i]$, the following are equivalent

► $i \rightarrow j$.

▶
$$\exists n \in \mathbb{N}$$
 such that $(P^n)_{ij} > 0$.

Definition: *i* and *j* communicate (not.: $i \leftrightarrow j$) $\Leftrightarrow i \rightarrow j$ and $j \rightarrow i$.

This allows for a partition of the state space S into classes (=subsets of S in which states communicate with each other).

 \rightsquigarrow two types of classes:

- C is open $\Leftrightarrow \forall i \in C$, there is some $j \notin C$ such that $i \to j$.
- C is closed $\Leftrightarrow \forall i \in C$, there is no $j \notin C$ such that $i \to j$.

There are strong links between the types of classes and the types of states...

Proposition: all states in an open class C are transient.

Proof: let $i \in C$. Then there is some $j \notin C$ such that $i \to j$ (and hence $j \nleftrightarrow i$). We then have

$$1 - f_{ii} = \mathbb{P}[T_i = \infty | X_0 = i]$$

$$\geq \mathbb{P}[\text{go to } j \text{ before coming back to } i | X_0 = i]$$

$$= \alpha_{ij} > 0,$$

so that *i* is transient.

Classification of states

What about states in a closed class?

Proposition: let C be a closed class. Then if there is some recurrent state $i \in C$, all states in C are recurrent.

Proof: let $j \in C$. Choose $r, s \in \mathbb{N}$ such that $(P^r)_{ij} > 0$ and $(P^s)_{ji} > 0$ (existence since $i \leftrightarrow j$). Then j is recurrent since

$$\begin{split} r_{jj} &= \sum_{n=0}^{\infty} (P^{n})_{jj} \geq \sum_{n=r+s}^{\infty} (P^{n})_{jj} = \sum_{m=0}^{\infty} (P^{s}P^{m}P^{r})_{jj} \\ &= \sum_{m=0}^{\infty} \sum_{k,\ell} (P^{s})_{jk} (P^{m})_{k\ell} (P^{r})_{\ell j} \\ &\geq \sum_{m=0}^{\infty} (P^{s})_{ji} (P^{m})_{ii} (P^{r})_{ij} \\ &= (P^{s})_{ji} r_{ii} (P^{r})_{ij} = \infty. \end{split}$$

Classification of states

Proposition: let C be a closed class. Then if there is some recurrent state $i \in C$, all states in C are recurrent.

This result shows that recurrent and transient states do not mix in a closed class. Actually, it can be shown that:

Consequently, a closed class contains either

- transient states only, or
- positive-recurrent states only, or
- null-recurrent states only.

The following result is very useful:

Proposition: let C be a closed class, with $\#C < \infty$. Then all states in C are positive-recurrent.

How would look a closed class with transient states?

An example: with p + q = 1, consider the chain If $p > \frac{1}{2}$, one can show all states are transient...

Classification of states

A last result in this series:

Proposition: *let* C *be a closed class, with recurrent states. Then* $f_{ij} = 1$ *for all* $i, j \in C$.

Proof: let $i, j \in C$. Since *j* is recurrent, $f_{jj} = 1$, so that

$$0 = 1 - f_{jj} = \mathbb{P}[T_j = \infty | X_0 = j]$$

$$\geq \mathbb{P}[\text{go to } i \text{ before coming back to } j,$$

and then never come back to $j | X_0 = j]$

$$= \alpha_{ji}(1 - f_{ij}).$$

Hence, $\alpha_{ji}(1 - f_{ij}) = 0$. Since $\alpha_{ji} > 0$ $(j \rightarrow i)$, we must have $f_{ij} = 1$.

Outline of the course

- 1. A short introduction.
- 2. Basic probability review.
- 3. Martingales.

4. Markov chains.

4.1. Definitions and examples.

4.2. Strong Markov property, number of visits.

4.3. Classification of states.

4.4. Computation of *R* and *F*.

4.5. Asymptotic behavior.

- 5. Markov processes, Poisson processes.
- 6. Brownian motions.

Computation of *R* **and** *F*

In this section, we describe a systematic method that allows for computing the matrices

$$R = (r_{ij})$$

where

$$r_{ij} = \mathbb{E}[N_j | X_0 = i]$$

is the expected number of visits in *j* when starting from *i*, and

$$F=(f_{ij})$$

where

$$f_{ij} = \mathbb{P}[T_j < \infty | X_0 = i]$$

is the probability that, being in i, the HMC will visit j in the future.

Computation of *R* and *F*

The first step consists in renumerating the states in such a way the

indices of recurrent states are smaller than those of transient ones. (remark: we assume $\#S < \infty$ in this section)

Consequently, the transition matrix can be partitioned into

$$P = \begin{pmatrix} P_{rr} & P_{rt} \\ P_{tr} & P_{tt} \end{pmatrix},$$

where P_{tr} is the transition matrix from transient states to recurrent ones, P_{rr} that between recurrent states, and so on...

Of course, we will partition accordingly

$$R = \begin{pmatrix} R_{rr} & R_{rt} \\ R_{tr} & R_{tt} \end{pmatrix}$$
 and $F = \begin{pmatrix} F_{rr} & F_{rt} \\ F_{tr} & F_{tt} \end{pmatrix}$.

Computation of *R* and *F*

Actually, $P_{rt} = 0$.

Indeed, if *i* is recurrent and *j* is transient, *i* belongs to some closed class C_1 , while *j* belongs to another class C_2 (otherwise, *j* would be recurrent as well). Hence, $i \nleftrightarrow j$, so that $p_{ij} = 0$.

Clearly, this also implies that $R_{rt} = 0$ and $F_{rt} = 0$.

(a) Computation of R

We start with the computation of

$$R = \left(\begin{array}{cc} R_{rr} & R_{rt} \\ R_{tr} & R_{tt} \end{array}\right) = \left(\begin{array}{cc} R_{rr} & 0 \\ R_{tr} & R_{tt} \end{array}\right).$$

In the previous lecture, we showed that $R = \sum_{n=0}^{\infty} P^n$, so that

$$\begin{pmatrix} R_{rr} & 0\\ R_{tr} & R_{tt} \end{pmatrix} = R = \sum_{n=0}^{\infty} \begin{pmatrix} ? & 0\\ ? & P_{tt}^n \end{pmatrix} = \begin{pmatrix} ? & 0\\ ? & \sum_{n=0}^{\infty} P_{tt}^n \end{pmatrix},$$

which yields that

$$R_{tt} = \sum_{n=0}^{\infty} P_{tt}^n = I + \sum_{n=1}^{\infty} P_{tt}^n = I + P_{tt} \sum_{n=1}^{\infty} P_{tt}^{n-1} = I + P_{tt} R_{tt},$$

so that $R_{tt} = (I - P_{tt})^{-1}$.

(a) Computation of R

It remains to compute the entries r_{ij} , where *j* is recurrent.

 \rightarrow **Proposition**: for such entries, (i) $r_{ij} = \infty$ if *i* → *j* and (ii) $r_{ij} = 0$ if *i* → *j*. Proof:

(i) in the previous lecture, we have shown that $r_{ij} = f_{ij}/(1 - f_{jj})$ and $r_{jj} = 1/(1 - f_{jj})$, so that $r_{ij} = f_{ij}r_{jj}$. Now, if $i \rightarrow j$, we have $f_{ij} > 0$, so that $r_{ij} = f_{ij}r_{jj} = f_{ij} \times \infty = \infty$ (since *j* is recurrent). (ii) is trivial, since $i \nleftrightarrow j$ implies that $N_j | [X_0 = i] = 0$ a.s., which yields $r_{ij} = \mathbb{E}[N_j | X_0 = i] = 0$.

We now go to the computation of

$$F = \left(\begin{array}{cc} F_{rr} & F_{rt} \\ F_{tr} & F_{tt} \end{array}\right) = \left(\begin{array}{cc} F_{rr} & 0 \\ F_{tr} & F_{tt} \end{array}\right).$$

(i) *F*_{rr} =?

If
$$i \rightarrow j$$
, $f_{ij} = \mathbb{P}[T_j < \infty | X_0 = i] = 0$.

If $i \rightarrow j$, then we must also have $j \rightarrow i$ (indeed, $j \nleftrightarrow i$ would imply that *i* belongs to an open class, and hence that *i* is transient). Therefore, *i* and *j* are recurrent states belonging to the same class, so that $f_{ij} = 1$ (cf. the previous lecture).

(ii) *F*_{tt} =?

By inverting

$$\begin{cases} r_{jj} = \frac{1}{1 - f_{jj}} \\ r_{ij} = \frac{f_{ij}}{1 - f_{jj}}, \end{cases}$$

we obtain

$$f_{jj} = 1 - \frac{1}{r_{jj}}$$

$$f_{ij} = \frac{r_{ij}}{r_{jj}},$$

which does the job since $R = (r_{ij})$ has already been obtained...

(iii) $F_{tr} = ?$

Complicated... But most interesting! (discussion).

We start with a lemma:

 \rightsquigarrow Lemma: let *i* be transient. Let *j*, *k* be recurrent states in the same class *C*. Then $f_{ij} = f_{ik}$.

Proof: since j, k are recurrent states in the same class, $f_{jk} = 1$. Hence,

 $f_{ik} = \mathbb{P}[T_k < \infty | X_0 = i] \ge \mathbb{P}[\text{go to } j, \text{ then go to } k | X_0 = i] = f_{ij}f_{jk} = f_{ij}.$

Similarly, we obtain $f_{ij} \ge f_{ik}$, so that $f_{ik} = f_{ij}$

Therefore, it is sufficient to compute $\mathbb{P}[T_{\mathcal{C}} < \infty | X_0 = i]$ for each transient state *i* and for each class of recurrent states \mathcal{C} .

To achieve this, consider the new HMC (\tilde{X}_n) on \tilde{S} , for which

- the transient states of S remain transient states in \hat{S} , and
- ► each class C_k (k = 1,..., K) of recurrent states gives birth to a single recurrent state k in Š.

The transition matrix \tilde{P} of (\tilde{X}_n) is

$$\tilde{P} = \left(\begin{array}{cc} \tilde{P}_{rr} & \tilde{P}_{rt} \\ \tilde{P}_{tr} & \tilde{P}_{tt} \end{array}\right) = \left(\begin{array}{cc} I_{\mathcal{K}} & 0 \\ B & P_{tt} \end{array}\right),$$

where $B_{ik} = \mathbb{P}[\tilde{X}_1 = k | \tilde{X}_0 = i] = \sum_{j \in C_k} \mathbb{P}[X_1 = j | X_0 = i].$

Now, letting $T_{C_k} := \inf\{n \in \mathbb{N} | X_n \in C_k\} = \inf\{n \in \mathbb{N} | \tilde{X}_n = k\}$, the previous lemma states that $g_{ik} = \mathbb{P}[T_{C_k} < \infty | X_0 = i]$ is the common value of the f_{ij} 's, $j \in C_k$.

 \rightsquigarrow **Proposition**: let $G = (g_{ik})$, where $g_{ik} = \mathbb{P}[T_{C_k} < \infty | X_0 = i]$. Then $G = R_{tt}B$.

Proof:

$$g_{ik} = \mathbb{P}[T_{\mathcal{C}_k} < \infty | X_0 = i] = \lim_{n \to \infty} \mathbb{P}[X_n \in \mathcal{C}_k | X_0 = i]$$
$$= \lim_{n \to \infty} \mathbb{P}[\tilde{X}_n = k | \tilde{X}_0 = i] = \lim_{n \to \infty} (\tilde{P}^n)_{ik}.$$

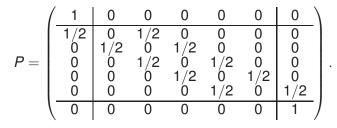
Now, it is easy to check that

$$\tilde{P}^n = \left(\begin{array}{cc} I_K & 0\\ B^{(n)} & P^n_{tt} \end{array}\right),$$

where
$$B^{(n)} = B + P_{tt}B + P_{tt}^2B + ... + P_{tt}^{n-1}B$$
. Hence,
 $G = \lim_{n \to \infty} B^{(n)} = \lim_{n \to \infty} (B + P_{tt}B + P_{tt}^2B + ... + P_{tt}^{n-1}B)$
 $= \left(\sum_{n=0}^{\infty} P_{tt}^n\right) B = R_{tt}B.$

A and B own together 6\$. They sequentially bet 1\$ when flipping a (fair) coin. Let X_n be the fortune of A after game n. The game ends as soon as some player is ruined.

 \rightsquigarrow (*X_n*) is a HMC with transition matrix



We first have to renumerate the states in such a way recurrent states come before transient ones:

 \rightsquigarrow (*X_n*) is a HMC with transition matrix

$$P = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ \hline 1/2 & 0 & 0 & 1/2 & 0 & 0 \\ 0 & 0 & 1/2 & 0 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 1/2 & 0 & 1/2 & 0 \\ 0 & 0 & 0 & 0 & 1/2 & 0 & 1/2 \\ 0 & 1/2 & 0 & 0 & 0 & 1/2 & 0 \end{pmatrix}$$

The computation of *R* is immediate, but for the block R_{tt} , which is given by $R_{tt} = (I - P_{tt})^{-1}$

$$= \begin{pmatrix} 1 & -\frac{1}{2} & 0 & 0 & 0 \\ -\frac{1}{2} & 1 & -\frac{1}{2} & 0 & 0 \\ 0 & -\frac{1}{2} & 1 & -\frac{1}{2} & 0 \\ 0 & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} \\ 0 & 0 & 0 & -\frac{1}{2} & 1 \end{pmatrix}^{-1} = \begin{pmatrix} \frac{5}{3} & \frac{4}{3} & 1 & \frac{2}{3} & \frac{1}{3} \\ \frac{4}{3} & \frac{8}{3} & 2 & \frac{4}{3} & \frac{2}{3} \\ 1 & 2 & 3 & 2 & 1 \\ \frac{2}{3} & \frac{4}{3} & 2 & \frac{8}{3} & \frac{4}{3} \\ \frac{1}{3} & \frac{2}{3} & 1 & \frac{4}{3} & \frac{5}{3} \end{pmatrix},$$

from which we learn, e.g., that $\mathbb{E}[N_6|X_0 = 3] = r_{36} = \frac{2}{3}$, or that the expected number of flips required to end the game, when starting from state 3, is

$$\sum_{j=2}^6 r_{3j}=8.$$

The computation of *F* is immediate, but for the blocks F_{tt} and F_{tr} . The latter, in this simple case, is given by $F_{tr} = G = R_{tt}B = R_{tt}P_{tr}$

from which we learn, e.g., that the probability *A* loses the game, when he starts with 2\$ (=state 3), is

$$f_{30} = \frac{2}{3}.$$

Remarks:

- These results were previously obtained, in the chapter about martingales, by using the optional stopping theorem.
- It should be noted however that the methodology developed in this chapter applies to arbitrary graph structures...

Outline of the course

- 1. A short introduction.
- 2. Basic probability review.
- 3. Martingales.

4. Markov chains.

4.1. Definitions and examples.

4.2. Strong Markov property, number of visits.

4.3. Classification of states.

4.4. Computation of *R* and *F*.

4.5. Asymptotic behavior.

- 5. Markov processes, Poisson processes.
- 6. Brownian motions.

Asymptotic behavior: an example

Let $0 \le p, q \le 1$ (with 0) and consider the chain $We are interested in <math>a^{(n)} = (\mathbb{P}[X_n = 0], \mathbb{P}[X_n = 1])$ for large *n*. We have $a^{(n)} = a^{(0)}P^n$ and

$$a^{(0)}P^n = (\xi, 1-\xi) \left[\frac{1}{p+q} \begin{pmatrix} q & p \\ q & p \end{pmatrix} + \frac{(1-p-q)^n}{p+q} \begin{pmatrix} p & -p \\ -q & q \end{pmatrix} \right],$$

so that

$$\lim_{n\to\infty} a^{(n)} = (\xi, 1-\xi) \frac{1}{p+q} \begin{pmatrix} q & p \\ q & p \end{pmatrix} = \left(\frac{q}{p+q}, \frac{p}{p+q}\right),$$

which does not depend on $a^{(0)}$ (not so amazing! Why?)

Let (X_n) be a HMC with transition matrix *P*.

Definition: (X_n) admits a limiting distribution \Leftrightarrow

- $\exists \pi$ such that $\lim_{n\to\infty} a^{(n)} = \pi$,
- $\pi_j \ge 0$ for all j and $\pi \mathbf{1} = \sum_j \pi_j = \mathbf{1}$,
- π does not depend on $a^{(0)}$.

Remarks:

- π is called the limiting distribution.
- The existence of π does only depend on *P*.
- Not every HMC does admit some limiting distribution:

Consider the chain We have

$$a^{(n)} = a^{(0)}P^n = (\xi, 1-\xi) \left[\frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} + \frac{(-1)^n}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \right]$$
$$= \dots = \left(\frac{1}{2} + (-1)^n (\xi - \frac{1}{2}), \frac{1}{2} + (-1)^{n+1} (\xi - \frac{1}{2}) \right),$$

which does only converge for $\xi = \frac{1}{2}$. Hence, this HMC does not admit a limiting distribution...

How to determine the limiting distribution (if it exists)?

 \sim **Theorem 1**: assume the HMC is (i) irreducible (that is, contains only one class) and (ii) non-periodic. Then all states are positive-recurrent \Leftrightarrow The system of equations

$$xP = x$$
$$x1 = 1$$

has a nonnegative solution (and, in that case, $x = \pi$ is the limiting distribution).

Remark: π is also called the stationary (or invariant distribution). This terminology is explained by the fact that if one takes $a^{(0)} = \pi$, then $a^{(n)} = a^{(0)}P^n = a^{(0)}P^{n-1} = a^{(0)}P^{n-2} = \ldots = a^{(0)}P = a^{(0)}$ for all *n*.

How to determine the limiting distribution (if it exists)?

<

 \sim **Theorem 2**: assume the HMC has a finite state space and that *P* is regular (that is, ∃n such that $(P^n)_{ij} > 0$ for all *i*, *j*). Then it admits a limiting distribution, which is given by the solution of

$$\begin{cases} xP = x \\ x1 = 1. \end{cases}$$

 \sim **Theorem 3**: assume the eigenvalue 1 of P has multiplicity 1 and that all other eigenvalues $\lambda_j (\in \mathbb{C})$ satisfy $|\lambda_j| < 1$. Then the conclusion of Theorem 2 holds.

A simple (artificial) example...

Consider the chain with transition matrix

$$\mathsf{P} = \left(\begin{array}{cc} \frac{3}{4} & \frac{1}{4} \\ 0 & 1 \end{array}\right).$$

Clearly, Theorem 2 does not apply, but Theorem 3 does. The limiting distribution is given by

$$(\pi_0,\pi_1)\left(egin{array}{cc} rac{3}{4} & rac{1}{4} \\ 0 & 1 \end{array}
ight) = (\pi_0,\pi_1), \quad \pi_0+\pi_1=1, \quad \pi_0\geq 0, \quad \pi_1\geq 0,$$

which yields $\pi = (\pi_0, \pi_1) = (0, 1)...$ which is not very surprising.