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Strong Markov property

Quite similarly as for the optional stopping theorem for

martingales, P[Xn+1 = j |Xn = i] = pij does also hold at stopping

times T . This is the so-called “strong Markov property" (SMP).

An illustration: for 0 < p,q < 1 (p + q = 1), consider the HMC

with graph

Let T be the time of first visit in 2 ❀ P[XT+1 = 1|XT = 2] = q(= p21).

Let T be the time of last visit in 2 ❀ P[XT+1 = 1|XT = 2] = q∞ = 0

(6= p21), which shows that the SMP may be violated if T is not a

ST.



Numbers of visits

Of particular interest is also the total number of visits in j , that is

Nj =
∑

∞

n=0 I[Xn=j ].

To determine the distribution of Nj , let
◮ Tj = inf{n ∈ N0|Xn = j}, which is the time of first visit in j

(if X0 6= j) or of first return to j (if X0 = j), and
◮ fij = P[Tj < ∞|X0 = i].

Let θk be the time of k th visit of the chain in j (if there are only k

visits in j , we let θℓ = ∞ for all ℓ ≥ k + 1 and θℓ+1 − θℓ = ∞ for

all ℓ ≥ k).

Then, for k = 1,2, . . .,
P[Nj = k |X0 = i]

= P[θ1 < ∞, . . . , θk < ∞, θk+1 = ∞|X0 = i]

= P[θ1 < ∞|X0 = i] . . .P[θk+1 = ∞|θ1 < ∞, ..., θk < ∞,X0 = i]

= P[θ1 < ∞|X0 = i](P[θ1 < ∞|X0 = j])k−1
P[θ1 = ∞|X0 = j]

= fij f
k−1
jj (1 − fjj).



Numbers of visits

Working similarly, one shows that

P[Nj = k |X0 = i] =

{

fij f
k−1
jj (1 − fjj) if k > 0

1 − fij if k = 0

for i 6= j , and P[Nj = k |X0 = j] = f k−1
jj (1 − fjj), k > 0.

Hence, letting rij = E [Nj |X0 = i] be the expected number of

visits in j when starting from i , we have, for i 6= j ,

rij =
∞
∑

k=0

k P[Nj = k |X0 = i] = fij(1 − fjj)
∞
∑

k=1

k f k−1
jj =

fij

1 − fjj

and

rjj =

∞
∑

k=0

k P[Nj = k |X0 = j] = (1 − fjj)

∞
∑

k=1

k f k−1
jj =

1

1 − fjj
.



Numbers of visits

Similarly as for the transition probabilities pij , the

rij = E[Nj |X0 = i] will be collected in some matrix R = (rij).

Note that

rij = E

[

∞
∑

n=0

I[Xn=j ]|X0 = i
]

=

∞
∑

n=0

E[I[Xn=j ]|X0 = i]

=

∞
∑

n=0

P[Xn = j |X0 = i] =

∞
∑

n=0

p
(n)
ij =

∞
∑

n=0

(Pn)ij ,

which shows that

R =

∞
∑

n=0

Pn.
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Classification of states

Definition:

◮ the state j is transient ⇔ fjj < 1.

◮ the state j is recurrent ⇔ fjj = 1.

Remarks:

◮ j transient ⇔ rjj < ∞; j recurrent ⇔ rjj = ∞.

◮ j transient ⇒ P[Tj = ∞|X0 = j] > 0 ⇒ E[Tj |X0 = j] = ∞.

◮ j recurrent ⇒ P[Tj = ∞|X0 = j] = 0, but E[Tj |X0 = j] can be

finite or infinite...

❀ Definition:

◮ j is positive-recurrent ⇔
j is recurrent and E[Tj |X0 = j] < ∞.

◮ j is null-recurrent ⇔ j is recurrent and E[Tj |X0 = j] = ∞.



Classification of states

Definition:
j is accessible from i (not. i → j) ⇔ ∃n ∈ N such that p

(n)
ij > 0

(that is, there is some path, from i to j , in the graph of the

HMC).

Letting αij = P[go to j before coming back to i |X0 = i], the

following are equivalent

◮ i → j .

◮ ∃n ∈ N such that (Pn)ij > 0.

◮ fij > 0.

◮ αij > 0.



Classification of states

Definition: i and j communicate (not.: i ↔ j) ⇔ i → j and j → i .

This allows for a partition of the state space S into classes

(=subsets of S in which states communicate with each other).



Classification of states

❀ two types of classes:

◮ C is open ⇔ ∀i ∈ C, there is some j /∈ C such that i → j .

◮ C is closed ⇔ ∀i ∈ C, there is no j /∈ C such that i → j .



Classification of states

There are strong links between the types of classes and the
types of states...

Proposition: all states in an open class C are transient.

Proof: let i ∈ C. Then there is some j /∈ C such that i → j (and

hence j →\ i). We then have

1 − fii = P[Ti = ∞|X0 = i]

≥ P[go to j before coming back to i |X0 = i]

= αij > 0,

so that i is transient. �



Classification of states

What about states in a closed class?

Proposition: let C be a closed class. Then if there is some

recurrent state i ∈ C, all states in C are recurrent.

Proof: let j ∈ C. Choose r , s ∈ N such that (Pr )ij > 0 and

(Ps)ji > 0 (existence since i ↔ j). Then j is recurrent since

rjj =

∞
∑

n=0

(Pn)jj ≥

∞
∑

n=r+s

(Pn)jj =

∞
∑

m=0

(PsPmPr )jj

=
∞
∑

m=0

∑

k ,ℓ

(Ps)jk (P
m)kℓ(P

r )ℓj

≥
∞
∑

m=0

(Ps)ji(P
m)ii(P

r )ij

= (Ps)ji rii(P
r )ij = ∞.

�



Classification of states

Proposition: let C be a closed class. Then if there is some

recurrent state i ∈ C, all states in C are recurrent.

This result shows that recurrent and transient states do not mix

in a closed class. Actually, it can be shown that:

Consequently, a closed class contains either

◮ transient states only, or

◮ positive-recurrent states only, or

◮ null-recurrent states only.



Classification of states

The following result is very useful:

Proposition: let C be a closed class, with #C < ∞. Then all

states in C are positive-recurrent.

How would look a closed class with transient states?

An example: with p + q = 1, consider the chain

If p > 1
2 , one can show all states are transient...



Classification of states

A last result in this series:

Proposition: let C be a closed class, with recurrent states.

Then fij = 1 for all i , j ∈ C.

Proof: let i , j ∈ C. Since j is recurrent, fjj = 1, so that

0 = 1 − fjj = P[Tj = ∞|X0 = j]

≥ P[go to i before coming back to j ,

and then never come back to j |X0 = j]

= αji(1 − fij).

Hence, αji(1 − fij) = 0. Since αji > 0 (j → i), we must have

fij = 1. �
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Computation of R and F

In this section, we describe a systematic method that allows for

computing the matrices

R = (rij)

where

rij = E[Nj |X0 = i]

is the expected number of visits in j when starting from i , and

F = (fij)

where

fij = P[Tj < ∞|X0 = i]

is the probability that, being in i , the HMC will visit j in the

future.



Computation of R and F

The first step consists in renumerating the states in such a way

the

indices of recurrent states are smaller than those of transient ones.
(remark: we assume #S < ∞ in this section)

Consequently, the transition matrix can be partitioned into

P =

(

Prr Prt

Ptr Ptt

)

,

where Ptr is the transition matrix from transient states to

recurrent ones, Prr that between recurrent states, and so on...

Of course, we will partition accordingly

R =

(

Rrr Rrt

Rtr Rtt

)

and F =

(

Frr Frt

Ftr Ftt

)

.



Computation of R and F

Actually, Prt = 0.

Indeed, if i is recurrent and j is transient, i belongs to some

closed class C1, while j belongs to another class C2 (otherwise,

j would be recurrent as well). Hence, i →\ j , so that pij = 0.

Clearly, this also implies that Rrt = 0 and Frt = 0.



(a) Computation of R

We start with the computation of

R =

(

Rrr Rrt

Rtr Rtt

)

=

(

Rrr 0

Rtr Rtt

)

.

In the previous lecture, we showed that R =
∑

∞

n=0 Pn, so that
(

Rrr 0
Rtr Rtt

)

= R =

∞
∑

n=0

(

? 0
? Pn

tt

)

=

(

? 0
?

∑

∞

n=0 Pn
tt

)

,

which yields that

Rtt =
∞
∑

n=0

Pn
tt = I +

∞
∑

n=1

Pn
tt = I + Ptt

∞
∑

n=1

Pn−1
tt = I + PttRtt ,

so that Rtt = (I − Ptt)
−1.



(a) Computation of R

It remains to compute the entries rij , where j is recurrent.

❀ Proposition: for such entries, (i) rij = ∞ if i → j and

(ii) rij = 0 if i →\ j .

Proof:

(i) in the previous lecture, we have shown that rij = fij/(1 − fjj)
and rjj = 1/(1 − fjj), so that rij = fij rjj . Now, if i → j , we have

fij > 0, so that rij = fij rjj = fij ×∞ = ∞ (since j is recurrent).

(ii) is trivial, since i →\ j implies that Nj |[X0 = i] = 0 a.s., which

yields rij = E[Nj |X0 = i] = 0. �



(b) Computation of F

We now go to the computation of

F =

(

Frr Frt

Ftr Ftt

)

=

(

Frr 0

Ftr Ftt

)

.

(i) Frr =?

If i →\ j , fij = P[Tj < ∞|X0 = i] = 0.

If i → j , then we must also have j → i (indeed, j →\ i would

imply that i belongs to an open class, and hence that i is

transient). Therefore, i and j are recurrent states belonging to

the same class, so that fij = 1 (cf. the previous lecture).



(b) Computation of F

(ii) Ftt =?

By inverting

{ rjj =
1

1 − fjj

rij =
fij

1 − fjj
,

we obtain
{ fjj = 1 −

1

rjj

fij =
rij

rjj
,

which does the job since R = (rij) has already been obtained...



(b) Computation of F

(iii) Ftr =?

Complicated... But most interesting! (discussion).

We start with a lemma:

❀ Lemma: let i be transient. Let j , k be recurrent states in the

same class C. Then fij = fik .

Proof: since j , k are recurrent states in the same class, fjk = 1.

Hence,

fik = P[Tk < ∞|X0 = i] ≥ P[go to j , then go to k |X0 = i] = fij fjk = fij .

Similarly, we obtain fij ≥ fik , so that fik = fij �

Therefore, it is sufficient to compute P[TC < ∞|X0 = i] for each

transient state i and for each class of recurrent states C.



(b) Computation of F

To achieve this, consider the new HMC (X̃n) on S̃, for which

◮ the transient states of S remain transient states in S̃, and

◮ each class Ck (k = 1, . . . ,K ) of recurrent states gives birth

to a single recurrent state k in S̃.

The transition matrix P̃ of (X̃n) is

P̃ =

(

P̃rr P̃rt

P̃tr P̃tt

)

=

(

IK 0

B Ptt

)

,

where Bik = P[X̃1 = k |X̃0 = i] =
∑

j∈Ck
P[X1 = j |X0 = i].

Now, letting TCk
:= inf{n ∈ N|Xn ∈ Ck} = inf{n ∈ N|X̃n = k},

the previous lemma states that gik = P[TCk
< ∞|X0 = i] is the

common value of the fij ’s, j ∈ Ck .



(b) Computation of F

❀ Proposition: let G = (gik ), where gik = P[TCk
< ∞|X0 = i].

Then G = RttB.

Proof:

gik = P[TCk
< ∞|X0 = i] = lim

n→∞
P[Xn ∈ Ck |X0 = i]

= lim
n→∞

P[X̃n = k |X̃0 = i] = lim
n→∞

(P̃n)ik .

Now, it is easy to check that

P̃n =

(

IK 0

B(n) Pn
tt

)

,

where B(n) = B + PttB + P2
ttB + . . .+ Pn−1

tt B. Hence,

G = lim
n→∞

B(n) = lim
n→∞

(B + PttB + P2
ttB + . . .+ Pn−1

tt B)

=
(

∞
∑

n=0

Pn
tt

)

B = RttB.

�



An example

A and B own together 6$. They sequentially bet 1$ when flipping

a (fair) coin. Let Xn be the fortune of A after game n.
The game ends as soon as some player is ruined.

❀ (Xn) is a HMC with transition matrix

P =



















1 0 0 0 0 0 0

1/2 0 1/2 0 0 0 0
0 1/2 0 1/2 0 0 0
0 0 1/2 0 1/2 0 0
0 0 0 1/2 0 1/2 0
0 0 0 0 1/2 0 1/2

0 0 0 0 0 0 1



















.



An example

We first have to renumerate the states in such a way recurrent

states come before transient ones:

❀ (Xn) is a HMC with transition matrix

P =

















1 0 0 0 0 0 0
0 1 0 0 0 0 0

1/2 0 0 1/2 0 0 0
0 0 1/2 0 1/2 0 0
0 0 0 1/2 0 1/2 0
0 0 0 0 1/2 0 1/2
0 1/2 0 0 0 1/2 0

















.



An example

The computation of R is immediate, but for the block Rtt , which

is given by Rtt = (I − Ptt)
−1

=













1 −1
2 0 0 0

−1
2 1 −1

2 0 0

0 −1
2 1 −1

2 0

0 0 −1
2 1 −1

2

0 0 0 −1
2 1













−1

=













5
3

4
3 1 2

3
1
3

4
3

8
3 2 4

3
2
3

1 2 3 2 1
2
3

4
3 2 8

3
4
3

1
3

2
3 1 4

3
5
3













,

from which we learn, e.g., that E[N6|X0 = 3] = r36 = 2
3 , or that

the expected number of flips required to end the game, when
starting from state 3, is

6
∑

j=2

r3j = 8.



An example

The computation of F is immediate, but for the blocks Ftt and Ftr .

The latter, in this simple case, is given by Ftr = G = RttB = RttPtr

=













5
3

4
3 1 2

3
1
3

4
3

8
3 2 4

3
2
3

1 2 3 2 1
2
3

4
3 2 8

3
4
3

1
3

2
3 1 4

3
5
3

























1
2 0

0 0

0 0

0 0

0 1
2













=













5
6

1
6

2
3

1
3

1
2

1
2

1
3

2
3

1
6

5
6













,

from which we learn, e.g., that the probability A loses the game,

when he starts with 2$ (=state 3), is

f30 =
2

3
.



An example

Remarks:

◮ These results were previously obtained, in the chapter

about martingales, by using the optional stopping theorem.

◮ It should be noted however that the methodology

developed in this chapter applies to arbitrary graph

structures...
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Asymptotic behavior: an example

Let 0 ≤ p,q ≤ 1 (with 0 < p + q < 2) and consider the chain
We are interested in a(n) = (P[Xn = 0],P[Xn = 1]) for large n.

We have a(n) = a(0)Pn and

a(0)Pn = (ξ,1−ξ)

[

1

p + q

(

q p

q p

)

+
(1 − p − q)n

p + q

(

p −p

−q q

)]

,

so that

lim
n→∞

a(n) = (ξ,1 − ξ)
1

p + q

(

q p

q p

)

=
( q

p + q
,

p

p + q

)

,

which does not depend on a(0) (not so amazing! Why?)



Asymptotic behavior

Let (Xn) be a HMC with transition matrix P.

Definition: (Xn) admits a limiting distribution ⇔

◮ ∃π such that limn→∞ a(n) = π,

◮ πj ≥ 0 for all j and π1 =
∑

j πj = 1,

◮ π does not depend on a(0).

Remarks:

◮ π is called the limiting distribution.

◮ The existence of π does only depend on P.

◮ Not every HMC does admit some limiting distribution:



Asymptotic behavior

Consider the chain
We have

a(n) = a(0)Pn = (ξ,1 − ξ)

[

1

2

(

1 1

1 1

)

+
(−1)n

2

(

1 −1

−1 1

)]

= . . . =
(1

2
+ (−1)n(ξ −

1

2
),

1

2
+ (−1)n+1(ξ −

1

2
)
)

,

which does only converge for ξ = 1
2 . Hence, this HMC does not

admit a limiting distribution...



Asymptotic behavior

How to determine the limiting distribution (if it exists)?

❀ Theorem 1: assume the HMC is (i) irreducible (that is,

contains only one class) and (ii) non-periodic. Then all states

are positive-recurrent ⇔ The system of equations
{

xP = x

x1 = 1

has a nonnegative solution (and, in that case, x = π is the

limiting distribution).

Remark: π is also called the stationary (or invariant

distribution). This terminology is explained by the fact that if

one takes a(0) = π, then

a(n) = a(0)Pn = a(0)Pn−1 = a(0)Pn−2 = . . . = a(0)P = a(0) for all n.



Asymptotic behavior

How to determine the limiting distribution (if it exists)?

❀ Theorem 2: assume the HMC has a finite state space and

that P is regular (that is, ∃n such that (Pn)ij > 0 for all i , j ). Then

it admits a limiting distribution, which is given by the solution of
{

xP = x

x1 = 1.

❀ Theorem 3: assume the eigenvalue 1 of P has multiplicity 1

and that all other eigenvalues λj(∈ C) satisfy |λj | < 1. Then the

conclusion of Theorem 2 holds.



Asymptotic behavior

A simple (artificial) example...

Consider the chain with transition matrix

P =

(

3
4

1
4

0 1

)

.

Clearly, Theorem 2 does not apply, but Theorem 3 does.

The limiting distribution is given by

(π0, π1)

(

3
4

1
4

0 1

)

= (π0, π1), π0 + π1 = 1, π0 ≥ 0, π1 ≥ 0,

which yields π = (π0, π1) = (0,1)... which is not very surprising.


