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Strong Markov property

Quite similarly as for the optional stopping theorem for
martingales, P[X;1 = j|Xn = i] = p; does also hold at stopping
times T. This is the so-called “strong Markov property" (SMP).

An illustration: for 0 < p,q < 1 (p + g = 1), consider the HMC
with graph
Let T be the time of first visit in 2 ~ P[X7.1 = 1| X7 = 2] = q(= p21).

Let T be the time of last visitin 2 ~ P[X74 =1 X7 =2] =g =0
(# p21), which shows that the SMP may be violated if T is not a
ST.



Numbers of visits

Of particular interest is also the total number of visits in j, that is
Ni = 22020 lxe=i1-
To determine the distribution of N;, let

» T; =inf{n € Ng|X, = j}, which is the time of first visit in j

(if Xo # j) or of first return to j (if Xy = j), and

> fi =P[T; < oco|Xp = 1].
Let 6k be the time of kth visit of the chain in j (if there are only k
visits in j, we let 0, = oo forall ¢ > k +1 and 6,1 — 6, = oo for
all ¢ > k).

Then, fork=1.2,.. .,
PN; = k|Xo = 1]
= P[0 < o00,...,0k < 00,0k11 = 00| Xg =]
= P[0y < 00| Xy =1]...Pllkr1 = 00|01 < 00, ...,0k < 00, Xog = ]
= P[0y < ool Xo = |(P[01 < 00| Xo = 1)¥ P[0 = 00| Xp = j]

k—
= (1 -1



Numbers of visits

Working similarly, one shows that

o A PR A=) i k>0
P[M_k|xo_']_{ 1—f if k=0

fori#j,and P[N; = k|Xo =j] = ff'(1 =), k>0.

Hence, letting rj = E[N;| Xy = i] be the expected number of
visits in j when starting from /i, we have, for i # J,

rj = ZKP[N_MXO_I]_f,/ Zkfk1: ,~,-
k=0

and

rjj:ZkP[Nj:k‘XO:j] 1_fll)zkfk 1: f)‘j
k=0




Numbers of visits

Similarly as for the transition probabilities pj;, the
rj = E[N;| Xy = i] will be collected in some matrix B = (r).

Note that

rj = E[Z lixa=pXo = l} = ZE[I[Xn:j]‘XO =1

= Zp[xn = j|Xo =] = Zp"” Z P,
n=0
which shows that

R= i P".
n=0
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Classification of states

Definition:
» the state j is transient < f; < 1.
» the state j is recurrent < f; = 1.

Remarks:
» jtransient < r; < oo; j recurrent < rj = oo.
» jtransient = P[T; = 00| Xy = j] > 0 = E[T;| Xy = j] = oo.
» jrecurrent = P[T; = oo|Xo = j] = 0, but E[T;| Xo = j] can be
finite or infinite...

~ Definition:

» jis positive-recurrent <
Jis recurrent and E[T;| Xy = j] < oco.
» jis null-recurrent < jis recurrent and E[T;| X = j] = oco.



Classification of states

Definition:
j is accessible from i (not. i — j) < 3n € N such that pfj”) >0

(that is, there is some path, from i to j, in the graph of the
HMC).

Letting aj = PP[go to j before coming back to /| Xy = /], the
following are equivalent

> .

» dn e Nsuch that (P"); > 0.
> f,'j>0.

> a,-j>0.




Classification of states

Definition: j and j (not:i>j)ei—jandj— .

This allows for a partition of the state space S into
(=subsets of S in which states communicate with each other).



Classification of states

~» two types of classes:

» Cisopen < VieC,thereis somej ¢ C such that i — j.
» Cisclosed < VieC, thereisnoj ¢ C such thati — j.



Classification of states

There are strong links between the types of classes and the
types of states...

Proposition: all states in an open class C are transient.

Proof: let i € C. Then there is some j ¢ C such that i — j (and
hence j - i). We then have

1ty =B{T = oolXo = ]
> P[go to j before coming back to i| Xy = /]

:Oz,'j>0,

so that i is transient.



Classification of states

What about states in a closed class?

Proposition: /et C be a closed class. Then if there is some
recurrent state i ¢ C, all states in C are recurrent.

Proof: let j € C. Choose r, s € N such that (P"); > 0 and
(P®);i > 0 (existence since /i <+ j). Then j is recurrent since

i = Z(Pn)jj 2 Z (P = Z(PSPmPr)//
n=0 n=r+s m=0
= > D (PK(P™ke(P)y
m=0 k,/
> > (Pi(P™Mi(P);
m=0

= (P%)ifi(P")j = oo.



Proposition: /et C be a closed class. Then if there is some
recurrent state i € C, all states in C are recurrent.

This result shows that recurrent and transient states do not mix
in a closed class. Actually, it can be shown that:

Consequently, a closed class contains either
» transient states only, or
» positive-recurrent states only, or
» null-recurrent states only.



Classification of states

The following result is very useful:

Proposition: /et C be a closed class, with #C < co. Then all
states in C are positive-recurrent.

How would look a closed class with transient states?

An example: with p + g = 1, consider the chain
If p> %, one can show all states are transient...



Classification of states

A last result in this series:

Proposition: /et C be a closed class, with recurrent states.
Then fj =1 foralli,jcC.

Proof: let /,j € C. Since j is recurrent, f; = 1, so that
0=1—1=P[T; = o0|Xg =J]
> IP[go to i before coming back to j,

and then never come back to j| Xy = J]
= aji(1 = f;).

Hence, aji(1 — f;) = 0. Since aj; > 0 (j — i), we must have
fi = 1.
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Computation of Rand F

In this section, we describe a systematic method that allows for
computing the matrices

R = (ry)

where
rj = E[N;|Xo = 1]

is the expected number of visits in j when starting from /, and
F=(f)

where
fj = IP’[T,- < oo|Xog = 1]

is the probability that, being in i, the HMC will visit j in the
future.



Computation of Rand F

The first step consists in renumerating the states in such a way
the

indices of recurrent states are smaller than those of transient ones.
(remark: we assume #S < oo in this section)

Consequently, the transition matrix can be partitioned into
P, P
P— rr rt >’
( Py Py
where Py is the transition matrix from transient states to
recurrent ones, P, that between recurrent states, and so on...

Of course, we will partition accordingly

R+ R Fr F
R— rr rt > d F= < r rt >
< Rtr Htt an Ftr Ftt



Computation of Rand F

Actually, P = 0.

Indeed, if i is recurrent and j is transient, i belongs to some
closed class Cy, while j belongs to another class C» (otherwise,
J would be recurrent as well). Hence, i - j, so that p; = 0.

Clearly, this also implies that R;; = 0 and F; = 0.



(a) Computation of R

We start with the computation of

R:<Rrr th>:<Rrr O >
Ry Ru Ry Ry )’

In the previous lecture, we showed that R = >, P", so that

R, > (? 0 >
H - 00 5
(A A )= Z(? P ) =7 v, e

which yields that

Rﬂ_ZPn_ I+ZPﬁ_ I+ P,,ZP;;— = |+ PyRy,
n=0 = =

so that Ry = (/ — Pﬁ)71



(a) Computation of R

It remains to compute the entries r;;, where j is recurrent.
~ Proposition: for such entries, (i) rj = oo ifi — j and
(ii) rj =0 ifi % j.

Proof:

(i) in the previous lecture, we have shown that r; = f; /(1 — f;)
and ry = 1/(1 — f;), so that rj = f;r;. Now, if i — j, we have
fi > 0, so that rj = fr; = f;j x 0o = oo (since j is recurrent).

(ii) is trivial, since i/ -~ j implies that N;|[Xo = /] = 0 a.s., which
yields rj = E[N;|Xo =i] =0



(b) Computation of F

We now go to the computation of

F:<Frr Frt>:<Frr 0>
Fir  Fu Fir Fu )

(i)Frr:?
|fi¢y>j,f,'j:P[Tj<OO|Xo:i]:O.

If i — j, then we must also have j — i (indeed, j - / would
imply that / belongs to an open class, and hence that i is
transient). Therefore, i and j are recurrent states belonging to
the same class, so that f; = 1 (cf. the previous lecture).



(b) Computation of F

(i) Fy =2
By inverting
1
{ T
- i
Ea
we obtain 1
{ fj=1- 5
r
li

which does the job since R = (r;) has already been obtained...



(b) Computation of F
(iii) Fyr =2

Complicated... But most interesting! (discussion).

We start with a lemma:

~» Lemma: /et i be transient. Let j, k be recurrent states in the
same class C. Then fjj = fi.

Proof: since j, k are recurrent states in the same class, fx = 1.
Hence,

fix = P[Tx < 0o|Xp = i] > IP[go to j, then go to k| Xg = /] = fjfx = fj.
Similarly, we obtain f; > fi, so that fy = f; O

Therefore, it is sufficient to compute P[T¢ < oco|Xy = /] for each
transient state / and for each class of recurrent states C.



To achieve this, consider the new HMC (X,,) on S, for which
» the transient states of S remain transient states in S, and

» each class Cx (k = 1,..., K) of recurrent states gives birth
to a single recurrent state k in S.

The transition matrix P of (X)) is
P:(E,” E’rt>:<lK 0>
P Py B Py )’
where By = P[X; = k|Xo = i] = e, PIX1 = j1Xo = i].
Now, letting Te, := inf{n € N|X, € Cx} = inf{n € N|X, = k},

the previous lemma states that gix = P[T¢, < oo|Xp = i] is the
common value of the f;’s, j € Cy.



(b) Computation of F

~ Proposition: let G = (gi), where gix = P[T¢, < oo|Xo = 1].
Then G = RyB.

Proof:
gk = P[Te <oolXo=i]= lim P[X,e CulXo =]
= lim P[X, =k|Xp = i] = lim (P").
n—oo n—oo
Now, it is easy to check that
- Ik 0
pr— ( A )
where B! = B+ PyB+ P2B + ...+ Py~ 'B. Hence,
G = lim B = Jlim (B + PyB + PiB+ ...+ Pl 'B)

n—oo

= (i P§)B = RuB.
n=0



An example

A and B own together 63$. They sequentially bet 1$ when flipping
a (fair) coin. Let X, be the fortune of A after game n.
The game ends as soon as some player is ruined.

~ (Xp) is @ HMC with transition matrix

110 0o 0 0 o0]O0
120 1/2 0 0 0 |0
0 (12 0 1/2 0 0| O
pP=| 0|0 12 0 1/2 0] 0
o0 0 1/2 0 1/2| 0
o0 o0 0 1/2 0 |1/
0/l0 0 0 0 0] 1




An example

We first have to renumerate the states in such a way recurrent
states come before transient ones:

~ (Xp) is @ HMC with transition matrix

1 0]0 0 0 0 0
o 1/0 0 0 0 O
12 0] 0 1/2 0 0 0
P=| 0 o0 |12 0 1/2 0 0
o 0|0 12 0 1/2 0

o 0|0 0 12 0 1/2
0o 12/ 0 0 0 1/2 0



An example

The computation of R is immediate, but for the block Ry, which
is given by Ry = (I — Py)™"

1
=2 1 -3 0 0 3 3 2 3 3
S R -1 2321],
1 1 2 4 8 4
6 o ¢ T 11713
0 0 0 —3 1 3 31 3 3

from which we learn, e.g., that E[Ng|Xo = 3] = r3s = %, or that
the expected number of flips required to end the game, when
starting from state 3, is

6
Z r3j = 8.
j=2



An example

The computation of F is immediate, but for the blocks Fj and Fi.
The latter, in this simple case, is given by F;- = G = RyB = Ry Py

5 4 4 2 1 10 5 1
SRS EANESANNE
3 8 3 8 113113
2 4 5 8 4 00 i 2
12,138 )\ 01 i3
3 3 3 3 2 6 6

from which we learn, e.g., that the probability A loses the game,
when he starts with 2$ (=state 3), is



Remarks:

» These results were previously obtained, in the chapter
about martingales, by using the optional stopping theorem.

» It should be noted however that the methodology
developed in this chapter applies to arbitrary graph
structures...
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Asymptotic behavior: an example

Let0 < p,qg <1 (with0 < p+ g < 2) and consider the chain
We are interested in al”) = (P[X, = 0], P[X, = 1]) for large n.
We have a(” = a(® P" and

1 (1-p-9q" -
©0) pn _ a p p -p
avp (&1£ﬂp+q<q p>+ p+q <—q q)}

so that

lim a(" = (&,1 - < > 9 __P )
n=o p+a p+q

which does not depend on a(® (not so amazing! Why?)



Let (X)) be a HMC with transition matrix P.

Definition: (X,,) admits a limiting distribution <
» I such that lim,_. a™ = T,
» mj>0foralljand 71 =3 ;m =1,

» 7 does not depend on a(©).

Remarks:
» 7 is called the limiting distribution.
» The existence of m does only depend on P.
» Not every HMC does admit some limiting distribution:



Asymptotic behavior

Consider the chain
We have

ERCUEN]
1 1+

which does only converge for £ = % Hence, this HMC does not
admit a limiting distribution...



Asymptotic behavior

How to determine the limiting distribution (if it exists)?

~» Theorem 1: assume the HMC is (i) irreducible (that is,
contains only one class) and (ii) non-periodic. Then all states
are positive-recurrent < The system of equations

XP = x

x1 =1
has a nonnegative solution (and, in that case, x = « is the
limiting distribution).

Remark: 7 is also called the stationary (or invariant

distribution). This terminology is explained by the fact that if

one takes a(® = r, then

an = g0 pn = g0 pn-1 — g0 pn-2 —  — 50p = 30 forall n.



Asymptotic behavior

How to determine the limiting distribution (if it exists)?

~» Theorem 2: assume the HMC has a finite state space and
that P is regular (that is, 3n such that (P"); > 0 for alli,j). Then
it admits a limiting distribution, which is given by the solution of

XP = x
x1=1.

~> Theorem 3: assume the eigenvalue 1 of P has multiplicity 1
and that all other eigenvalues \;(€ C) satisfy |\;| < 1. Then the
conclusion of Theorem 2 holds.



Asymptotic behavior

A simple (artificial) example...

Consider the chain with transition matrix

:
p:<01>.

Clearly, Theorem 2 does not apply, but Theorem 3 does.
The limiting distribution is given by

3

1
(77077T1)<8 ?)Z(Woﬂﬁ)’ mo+m =1, mm>0, m >0,

which yields © = (mg, m1) = (0, 1)... which is not very surprising.



