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A Markov process is a continuous-time Markov chain:

Let S be a finite or countable set (indexed by i = 1,2, ...)
Let (Xi)i>0 be a SP with X; : (2, A, P) — Sforall t.

Definition: (X;) is a homogeneous Markov process (HMP) on S

> (i) P[Xt+s = | Xu, 0 < u < ] =P[Xi3s = j| Xi] Vi sV
> (i) PXees = jIXe = 1 = P[Xs = j|Xo = 1] Vt,SVi.].

Remarks:

» (i) is the Markov property, whereas (ii) is related to
time-homogeneity.

» (ii) allows for defining the transition functions
pii(S) = P[Xtys = j| X; = 1]



Markov processes

Further remarks:

» As for Markov chains, we will collect the transition functions
pji(8) in the transition matrices P(s) = (p;(s))-

» Those transition matrices P(s) are stochastic for all s, i.e.,
pj(s) € [0,1] forall i,j and >, pj(s) = 1 for all /.

» The Chapman-Kolmogorov equations now state that
P(t+s) = P(t)P(s)
that is,
P[Xers = 1Xo = 1] = Y _B[X; = kX0 = IP[Xs = X0 = K],
k

for all s, t and all i, j (exercise).



Markov processes

Let W; =inf{s > 0| Xi+s # X} be the survival time of state X; from ¢.
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~> Theorem: leti € S. Then either
» () Wi[Xs =i]=0a.s., or
> (i) Wi|[X; = i] = o© a.s., or
» (i) Wi|[ Xt = i] ~ Exp()\;) for some \; > 0.



Proof:

Let fi(s) := P[W; > s|X; = i] = P[Wy > s|Xp = i] (by homogeneity).
Then, for all 51,5, > 0,

fi(s1+82) = P[Wp > s1+82|Xo = i] = P[Wp > s4, Ws1 > So| Xp = 1]
= ]P)[Ws1 > 82|W0 > 81, Xp = I]P[WO > S1|X0 = I]
= P[Ws, > $2|Xs, = i]fi(s1) = fi(S1)fi(S2).

Assume that 3sy > 0 such that fi(sy) > 0 (if this is not the case,
(i) holds). Then

» 0 < fi(Sp) = fi(so + 0) = f;(80)fi(0), so that f;(0) = 1.

» Now,

1(6) = gy 11 — 100 1O



Markov processes

Therefore, letting \; := —f/(0),
fi(s)

s
so that
S fll(u) S
Infi(s) = Infi(s) ~Inf(0) = | 3 du= / (=A) du=—X;s,
o fi(u) 0

for all s > 0. Hence,
fi(s) = P[W; > s|X; = i] = exp(—A\;S),

which establishes the result (note that (ii) corresponds to the
case \; = 0). O



Markov processes

Theorem: Leti € S. Then either
» () Wi[Xs =i]=0a.s., or
> (i) Wi|[Xi = i] = < a.s., or
> (i) Wi|[ Xt = i] ~ Exp()\;) for some \; > 0.

This result leads to the following classification of states:
» In case (i), / is said to be instantaneous
(as soon as the process goes to /, it goes away from it).
» In case (i), / is said to be absorbant
(if the process goes to /, it remains there forever).
» In case (iii), i is said to be stable

(if the process goes to /, it remains there for some
exponentially distributed time).



Markov processes

Assume that (X;) is conservative (i.e. there is no instantaneous
state). Then a typical sample path is
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Associate with (X;) both following SP:

» (a) the process of survival times (Tp.1 — Tn)nen, Where
To=0and T, 1 =Th+ Wr,neN;

» (b) the jump chain (Xn)nen, where X, = X7, ne N.



Theorem: Assume that (X;) is conservative. Then
PXpi1=J, Tost — Ta> S| Xo=loy.... Xn=in, Ty, ..., T
=PXny1 =/, Tost — Tn> 8| Xy = in] = e Py,
where P = (Py) is the transition matrix of a Markov chain such that

B 0 ifiis stable
"7\ 1 ifiisabsorbant.

This shows that

» (a) the jump chain is a HMC and

» (b) conditionally on Xy, ..., Xp, the survival times T, 1 — T,
are independent.



If (X:) is a conservative HMP, we can determine
» the process of survival times (T11 — Th)neny and
> the jump chain (Xp)nen.

One might ask whether it is possible to go the other way
around, that is, to determine (X;) from

» the process of survival times (T,1 — Tp)nen and
» the jump chain (X;)nen.
The answer:

Yes, provided that (X;) is regular, that is, is such that

lim T, = oc.
n—o0



Outline of the course

1. A short introduction.

2. Basic probability review.

3. Martingales.

4. Markov chains.

5. Markov processes, Poisson processes.

5.1. Markov processes.

5.2. Poisson processes.

6. Brownian motions.



Poisson processes

Definition: (N; = X}) is a Poisson process (with parameter
A > 0) & (X;) is a regular HMP, for which S = N,

010
N 01 0
P= 0 1 0 ;
and
o A
A\ A
=1 A



Poisson processes

A typical sample path:
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Remarks:

» (i) The survival times W, := Wr,_, (n € Np) are i.i.d.
Exp()).

» (i) T, = Y__; W, has an Erlang distribution with
parameters n and ), that is,

13t B g-at >0
FIn(H) = P[T, < ] = i=0 /! =
(6)=PlTn =1 { 0 if t < 0.

» (iii) For all t > 0, N; ~ P(At). Indeed,
SO0
PIN; < K] = P[Tips > ] = Y == e,
i=0

so that P[N; = k] = P[N; < k] — P[N; < k — 1] = 8 g,
» (iv) Hence, E[W,] = 1/X and E[N;] = A\ (~ X is a rate).



How to check (ii)?
» Ty = Wi ~ Exp()), so that (ii) holds true for n = 1.

» It remains to show that if (ii) holds for n, it also holds for
n+ 1, which can be achieved in the following way:

Flori(f) = 1—P[Tpyy >t =1- /OOO P[Thsq > t|Tn = ulf"(u) du
= 1- /OY]P[T,,H >t Ty = u]f™(u) du
_ /too P[Thy1 > 8| Th = u]f’"(u) du
— 1 _/tP[Wn+1 >t — u]fT(u) / fTn(u) du

= 11— /Ote_k(t—“)fT"(u) du — (FT”(oo) — FT”(t)) =



Poisson processes

An important feature of Poisson processes:

Theorem: for all t, h and k,

k
]P’[N,+h—Nt:k\Nu,Ogugt]:e_”'%.

Proof: From the Markov property,
P[Niyh — Ny = k| Ny, 0 < u <] =P[Nirph — Nt = k| Ny).

Now, P[Nt—i-h — Nt =k | Nt = n] =7



Poisson processes

Consider the SP (N := Niyp — Ny = Neypy — n| h > 0), with
survival times Wy, Wa, .. ., say.

W4
%A
¢ R
5 C
4 B
2 -—— L
o g



Poisson processes

Clearly,
» the jump chain of (N},) is that of a Poisson process, and
» Wh, Wi, ... arei.id. Exp()\).

As for W (that is clearly independent of the other W’s),

P[W; > w] = P[Wpyt > A+ w| Wy > A]
=P[Wypi1 > A+ w]/P[W, 1 > A] = e NATW) /g AA — g=AW,
for all w > 0, so that W; ~ Exp()\).

Hence, (Ny) is a Poisson process, and we have

. k
P[Nieph — Ny = k| Ny = n] = P[Ny, = k] = e % VK.



Theorem: for all t, h and k,

h)K
P[Nt+h—Nt=k\Nu,Ogugt]:e—/\h%'

This result implies that

» ()if0=fh <t <b<..the Ny, — N;'sare
independent.

> (i) Ng,, — N, ~ P(A(ti1 — 1)) (stationarity of the

4

increments).

Part (ii) shows that
1—Xh+o(h) ifk=0
P[k events in [t, t + h)] = { Ah+ o(h) ifk=1
o(h) if k> 2.



Compound Poisson processes

Let (N;)>0 be a Poisson process.
Let Yk, k € Ny be positive i.i.d. r.v/s (independent of (N;)).

Definition: (St)¢>o is @ compound Poisson process

)

s _ 0 if Ny =0
UM Y N>,

This SP plays a crucial role in the most classical model in
actuarial sciences...



Denoting by Z; the wealth of an insurance company at time t,
this model is
Zi=u+ct— S[,

where
» u is the initial wealth,
» cis the "income rate" (determining the premium), and

» St = (Zf’:1 Yk)Ijn,>1] is @ compound Poisson process
that models the costs of all sinisters up to time t (there are
N; sinisters, with random costs Y7, Ya,..., Yy, for the
company up to time t).



Compound Poisson processes

A typical sample path:
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Compound Poisson processes

Let T =inf{t > 0| Z; < 0} be the time at which the company
goes bankrupt.

Let ¢(u) = P[T < oo | Zy = u] be the ruin probability (when
starting from Z = u).

Then one can show the following:

Theorem: assume 1 = E[Y]| < co. Denote by \ the parameter
of the underlying Poisson process. Then,

» (i)ifc < Au,v(u)=1forallu>0;
> (i) ifc > A\, ¥(u) < 1 forallu > 0.

This shows that if it does not charge enough, the company will
go bankrupt a.s.
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A heuristic introduction

Consider a symmetric RW (starting from 0) X, = Y7, Y,
where the Y;'s are i.i.d. with P[Y; = 1] = P[Y; = —1] = J.
Now, assume that, at each At units of time, we make a step
with length Ax. Then, writing n; = [t/(At)],

Nt
X =(8x) Y,
i=1

where we consider (X;);>o as a continuous-time SP.

Our goal is to let Ax, At — 0 in such a way we obtain a
non-trivial limiting process. This requires a non-zero bounded
limiting value of

Var[X{] = (AX)ZVar[zm: Y,} = (Ax)? iVar[Y,-] = (AX)2n;,
i=1 i=1

which leads to the choice Ax = o/ At; the resulting variance is
then o2t (note that we always have E[X;] = 0).



What are the properties of the limiting process (X:)i>0?
nt
Xe= i At Y;
= lm,o VAL Y,

> Xo =0.
» X; is the limit of a sum of i.i.d. r.v.'s properly normalized so
that E[X;] = 0 and Var[X;] = ?t. Hence, X; ~ N(0, o°t);
» for each RW, the "increments" in disjoint time intervals are
L. ~» This should also hold in the limit, i.e.,
VO<Hh <b<... <, th—Xt1 , Xta—th, R ,th—th71 are l;

» for each RW, the increments are stationary (that is, their
distribution in [k, k + n] does not depend on k). ~ This
should also hold in the limit, i.e.

VS, t>0, Xees— Xi 2 Xs — Xo.



This leads to the following definition:

Definition: the SP (X});>0 is a Brownian motion <
> XO =0.
forall t > 0, X; ~ N(0, o%1);
the increments in disjoint time-intervals are 1L, i.e.
VO<t <b<...<l, th_Xt17Xt3_Xt27 e ,th—th_1 are I ;

v

v

v

the increments in equal-length time-intervals are
stationary, i.e.

VS,t>0, Xips— Xi 2 Xs — Xo

v

the sample paths of (X;);>o are a.s. continuous.



Definition

A typical sample path:

It can be shown that the sample paths (a.s.) are nowhere
differentiable...



Definition

Remarks:

» Also called a Wiener Process (this type of SP was first
studied rigourously by Wiener in 1923. It was used earlier
by Brown and Einstein as a model for the motion of a small
particle immersed in a liquid or a gas, and hence subject to
mollecular collisions).

» If o =1, (X}) is said to be standard. Clearly, if o is known,
one can always assume the underlying process is
standard.

» Sometimes, one also includes a drift in the model
~» (Xt :== pt + oB;), where B; a standard BM.

» In finance, u is the trend and o is the volatility.



Definition

A typical sample path:
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BM and the Markov property

Using the independence between disjoint increments, we
straightforwardly obtain

P[Xpis € B| Xy, 0 < u < ] = P[Xiys € B| X{].

This is nothing but the Markov property.

Also, note that
P[Xtys € B| Xt = X] = P[Xt1s — Xt € B— x| Xt — Xo = X]
— P[Xpys — Xe € B— X] = P[Xys — X; + x € B| = P[Y € B],

where Y ~ N(x,s). Hence,

P[X;.s € B| X; = x :/ e~ (r=%/(2s) gy .
Xess X =x] B V2rs 4



Continuous-time martingales are defined in a similar way as for
discrete-time ones. More precisely:

The SP (M)~ is a martingale w.r.t. the filtration (A¢)i>0 <
> (i) (Mt)s>0 is adapted to (A¢)i>o.
> (ii) E[|Mt]] < oo for all t.
> (iii) E[M¢|As] = Ms a.s. for all s < t.

Proposition: /et (X;) be a standard BM. Then
> (@) (Xi)=o0,
> (b) (th — t)tZO: and

02t
> (c) {eext_T)tzo

are martingales w.r.t. Ay = o(X,,0 <u<t)



BM and Martingales

Proof: in each case, (i) is trivial and (ii) is left as an exercise.
As for (iii):

(a) E[Xt|As] = E[Xs|As] + E[X; — Xs|As] = Xs + E[X; — Xs] = Xs.

(b)

E[XF — t|As] = E[(Xs + (X — Xs))?|As] — t

X2+ 2XE[X;: — Xs|As] +E[(X; — Xs)?|As] — t
X2+ 2XsE[X; — Xs] + E[(X¢ — Xs)?] — t

X2 4 Var[X; — Xs] — t

X2+ (t—s)—t

= X2-s.



BM and Martingales
(c)
B | A = @ T [

2 -
— X% ee(xt—xs)}
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HXs— L1t Vi=ry4
= e 2K er],

where Z ~ N(0,1). But
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which yields the result.



BM and Martingales

The optional stopping theorem (OST) still holds in this
continuous-time setup, yielding results such as the following:

Proposition: let (X;) be a standard BM. Fix a,b > 0. Define
Tap :=inf{t >0 : X; ¢ (—a,b)}. Then
> () E[X7,] =0
> (i) P[Xr,, = —a] =
» (iii) E[Tap] = ab.

P[Xr, = b] = and

a+b’ a+b’

Proof: (i) this follows from the OST and the fact (X;) is a martingale.
(i) 0 = E[X7,] = (—a) x P[X7, = —a] + bx (1 = P[X7,, = —a]).
Solving for P[XT,, = —a] yields the result.

(iii) The OST and the fact (X? — t) is a martingale imply that

E[X%, — ab] E[X2 — 0] =0, which yields

(—a)® x 225 + 6% x 22 — E[Ty) = O



BM and Martingales

2
As for the martingale <e9Xf‘ezt> , it allows for establishing
t>0

results such as the following:

Proposition: /et (X;) be a standard BM. Fix c,d > 0. Then
P[X; > ct + d for some t > 0] = 2%,

5 oA




