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BM and Gaussian processes

Let (Xt) be a SP.

Definition: (Xt) is a Gaussian process ⇔ for all k , for all

t1 < t2 < . . . < tk , (Xt1 , . . . ,Xtk )
′ is a Gaussian r.v.

Remark: the distribution of a Gaussian process is completely

determined by

◮ its mean function t 7→ E[Xt ] and

◮ its autocovariance function (s, t) 7→ Cov[Xs,Xt ].

Proposition: A standard BM (Xt) is a Gaussian process with

mean function t 7→ E[Xt ] = 0 and autocovariance function

(s, t) 7→ Cov[Xs,Xt ] = min(s, t).

This might also be used as an alternative definition for BMs...



BM and Gaussian processes

Proof: let (Xt) be a standard BM.

(i) For s < t , Xt − Xs
D
= Xt−s − Xs−s = Xt−s ∼ N (0, t − s).

By using the independence between disjoint increments, we

obtain, for 0 =: t0 < t1 < t2 < . . . < tk ,







Xt1 − X0
Xt2 − Xt1...

Xtk − Xtk−1






∼ N (0,Λ),

where Λ = (λij) is diagonal with λii = ti − ti−1.



BM and Gaussian processes

Hence,

k
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is normally distributed, so that (Xt) is a Gaussian process.

(ii) Clearly, t 7→ E[Xt ] = 0 for all t .

(iii) Eventually, assuming that s < t , we have

Cov[Xs,Xt ] = Cov[Xs,Xs+(Xt−Xs)] = Var[Xs]+Cov[Xs,Xt−Xs] =

= s + Cov[Xs − X0,Xt − Xs] = s + 0 = min(s, t).

�



Brownian bridges

Let (Xt)t≥0 be a BM.

Definition: if (Xt) is a BM, (Xt − tX1)0≤t≤1 is a Brownian

bridge.

Alternatively, it can be defined as a Gaussian process (over

(0,1)) with mean function t 7→ E[Xt ] = 0 and autocovariance

function (s, t) 7→ Cov[Xs,Xt ] = min(s, t)(1 − max(s, t))
(exercise).

Application:

Let X1, . . . ,Xn be i.i.d. with cdf F .

Let Fn(x) :=
1
n

∑n
i=1 I[Xi≤x] be the empirical cdf.

The LLN implies that Fn(x)
a.s.→ E[I[X1≤x]] = F (x) as n → ∞.

Actually, it can be shown that supx∈R |Fn(x)− F (x)| a.s.→ 0 as n → ∞
(Glivenko-Cantelli theorem).



Brownian bridges

Assume that X1, . . . ,Xn are i.i.d. Unif(0,1)
(F (x) = xI[x∈[0,1]] + I[x>1]).

Let Un(x) :=
1√
n

∑n
i=1

(

I[Xi≤x] − x
)

, x ∈ [0,1].

Then it can be shown that, as n → ∞,

sup
x∈[0,1]

|Un(x)| D→ sup
x∈[0,1]

|U(x)|,

where (U(x))0≤x≤1 is a Brownian bridge (Donsker’s theorem).
Coming back to the setup where X1, . . . ,Xn are i.i.d. with

(unknown) cdf F , the result above allows for testing
{

H0 : F = F0
H1 : F 6= F0,

where F0 is some fixed (continuous) cdf.



Brownian bridges

The so-called Kolmogorov-Smirnov test consists in rejecting H0

if the value of

sup
x∈[0,1]

|Un(x)| := sup
x∈[0,1]

∣

∣

∣

∣

1√
n

n
∑

i=1

(

I[F0(Xi )≤x] − x
)

∣

∣

∣

∣

exceeds some critical value (that is computed from Donsker’s

theorem).

This is justified by the fact that, under H0, F0(X1), . . . ,F0(Xn)
are i.i.d. Unif(0,1) (exercise).
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Stochastic calculus

Recall the definition of a (S)BM:

Definition: the SP (Xt)t≥0 is a standard Brownian motion ⇔
◮ X0 = 0.

◮ for all t > 0, Xt ∼ N (0, t);

◮ the increments in disjoint time-intervals are ⊥⊥ , i.e.

∀0 ≤ t1 < t2 < . . . < tk , Xt2−Xt1 ,Xt3−Xt2 , . . . ,Xtk−Xtk−1
are ⊥⊥ ;

◮ the increments in equal-length time-intervals are

stationary, i.e.

∀s, t > 0, Xt+s − Xt
D
= Xs − X0;

◮ the sample paths of (Xt)t≥0 are a.s. continuous.



Stochastic integrals

In stochastic finance, it is crucial to be able to define integrals

such as
∫ t

0
Cx dBx , where (Cx)x≥0 is some SP that is adapted

to the SBM (Bx )x≥0.

The first idea is to mimic (pathwise) the definition of

∫ t

0

f (x)dg(x) = lim
max(ti−ti−1)→0

n
∑

i=1

f (yi)
[

g(ti)− g(ti−1)
]

,

where 0 = t0 < t1 < . . . < tn = t and yi is an arbitrary point in [ti−1, ti ].

❀ this leads to the temptative definition

(∫ t

0

Cx dBx

)

(ω) = lim
max(ti−ti−1)→0

n
∑

i=1

Cyi
(ω)

[

Bti (ω)− Bti−1
(ω)
]

.



Stochastic integrals

However, as t 7→ Bt is (a.s.) nowhere differentiable, this limit

does not exist for all (Cx ).

Therefore, we will rather adopt a stochastic limit as a definition:

Definition:

∫ t

0

Cx dBx = L2 − lim
max(ti−ti−1)→0

n
∑

i=1

Cti−1

[

Bti − Bti−1

]

.

Remarks:

◮ unlike in the pathwise definition, the result may depend on

the point yi ∈ [ti−1, ti). Therefore, we fix yi = ti−1;

◮ this concept is called Itô stochastic integral.



Stochastic integrals

In some cases, this integral can be computed explicitly from the

definition.

Example:
∫ t

0
Bx dBx =?

Letting ∆iB := Bti − Bti−1
and ∆i t := ti − ti−1, we have

∑

i

Bti−1

(

∆iB
)

=
∑

i

(

Bti−1
Bti − B2

ti−1

)

=
1

2

∑

i

[

(

B2
ti
− B2

ti−1

)

−
(

Bti − Bti−1

)2
]

=
1

2

(

B2
t − B2

0

)

− 1

2

∑

i

(

∆iB
)2

=
1

2
B2

t − 1

2

∑

i

(

∆iB
)2
,

and
∫ t

0

Bx dBx = L2 − lim
maxi (∆i t)→0

∑

i

Bti−1

(

∆iB
)

.



Stochastic integrals

Now, E
[
∑

i(∆iB)2
]

=
∑

i Var
[

∆iB
]

=
∑

i ∆i t = t and

Var
[

∑

i

(∆iB)2
]

=
∑

i

Var
[

(∆iB)2
]

=
∑

i

(∆i t)
2
Var
[

(N (0,1))2
]

= 2
∑

i

(∆i t)
2 ≤ 2(max

i
∆i t)

∑

i

∆i t = 2t(max
i

∆i t) → 0.

Hence,
∑

i

(

∆iB
)2 → t in L2 and we obtain

∫ t

0

Bx dBx =
1

2
B2

t − 1

2
t .

Remark (quadratic variation of BMs): we showed above that

E
[

(∆iB)2
]

= ∆i t and that Var
[

(∆iB)2
]

= 2(∆i t)
2 = o(∆i t). This

means that "(∆iB)2 behaves as ∆i t" (i.e., (dBt)
2 = dt).



Stochastic integrals

We showed that

∫ t

0

Bx dBx =
1

2
B2

t − 1

2
t .

This result is surprising at first sight because one would expect

∫ t

0

Bx dBx =

∫ t

0

d
(Bx )

2

2
=
[(Bx )

2

2

]t

0
=

1

2

(

B2
t − B2

0

)

=
1

2
B2

t .

This shows that the standard chain rule does not apply...



Standard chain rule

For standard integration,

df (g(x)) = f (g(x+dx))−f (g(x)) = [f (g(x))]′ dx+
[f (g(x))]′′

2
(dx)2+. . .

yields

f (g(t))−f (g(0)) =

∫ t

0

df (g(x)) =

∫ t

0

[f (g(x))]′ dx =

∫ t

0

f ′(g(x))dg(x).

This is the standard chain rule.

For stochastic integration, the chain rule (with f (x) = x2 and

g(x) = Bx ) yields

B2
t − B2

0 =

∫ t

0

2Bx dBx

(

6= B2
t − t

)

and is therefore violated.



Itô’s lemma

How to extend the chain rule?

From the quadratic variation of the BM,

df (Bx) = f (Bx+dx )− f (Bx ) = f ′(Bx )dBx +
f ′′(Bx )

2
(dBx)

2 + . . .

= f ′(Bx)dBx +
f ′′(Bx )

2
dx + . . . ,

which yields

f (Bt)− f (B0) =

∫ t

0

df (Bx) =

∫ t

0

f ′(Bx)dBx +
1

2

∫ t

0

f ′′(Bx )dx .

This is the so-called Itô lemma.



Itô’s lemma

Itô’s lemma states that

f (Bt)− f (B0) =

∫ t

0

f ′(Bx)dBx +
1

2

∫ t

0

f ′′(Bx )dx .

In our example, it yields (with f (x) = x2)

B2
t − B2

0 =

∫ t

0

2Bx dBx +
1

2

∫ t

0

2 dx =

∫ t

0

2Bx dBx + t ,

which provides our result

∫ t

0

Bx dBx =
1

2
B2

t − 1

2
t .



Itô’s lemma: extension 1

Let f : R2 → R with partial derivatives f1, f2, f11, f12, f22, etc.

Then

df (x ,Bx ) = f1(x ,Bx )dx + f2(x ,Bx )dBx +
f11(x ,Bx )

2
(dx)2

+
f22(x ,Bx )

2
(dBx)

2 + f12(x ,Bx )dx dBx + . . .

=
[

f1(x ,Bx ) +
f22(x ,Bx )

2

]

dx + f2(x ,Bx )dBx + . . . ,

which yields

f (t ,Bt)−f (0,B0) =

∫ t

0

[

f1(x ,Bx )+
f22(x ,Bx )

2

]

dx+

∫ t

0

f2(x ,Bx )dBx .



Geometric Brownian motion

Let (Bt) be a standard BM. Then a geometric BM is defined as

Xt = X0 exp
(

(c − σ2

2
)t + σBt

)

= f (t ,Bt),

where f (x , y) = X0 exp
(

(c − σ2

2 )x + σy
)

.

The previous extension of the Itô lemma yields

Xt−X0 = f (t ,Bt)−f (0,B0) =

∫ t

0

[(

c−σ2

2

)

f (x ,Bx )+
σ2f (x ,Bx )

2

]

dx

+

∫ t

0

σf (x ,Bx )dBx = c

∫ t

0

Xx dx + σ

∫ t

0

Xx dBx .

Such a process is called an Itô process.



Geometric Brownian motion

Differentiating, we obtain

dXt = cXt dt + σXt dBt ,

that is, Xt+dt − Xt

Xt
= c dt + σ dBt .

In words, the relative return from the asset in [t , t + dt] is given

by a linear trend disturbed by a stochastic noise term; c is the

so-called mean rate of return and σ is the volatility (which is a

measure of the riskiness of the asset).

The geometric BM should be thought of as a randomly

perturbed exponential function (if σ = 0, Xt = X0 exp(ct)).

People in economics believe in exponential growth. Hence,

they are quite satisfied with this model...



Itô’s lemma: extension 2

Consider the process (f (t ,Xt ))t≥0, where

Xt = X0 +

∫ t

0

ax dx +

∫ t

0

σx dBx ,

where (ax ) and (σx ) are adapted to (Bx ).

Then

f (t ,Xt)−f (0,X0) =

∫ t

0

[

f1(x ,Xx )+ax f2(x ,Xx )+
1

2
σ2

x f22(x ,Xx )
]

dx

+

∫ t

0

σx f2(x ,Xx )dBx .



An application: Black-Scholes formula

Consider a risky asset

Xt = X0 + c

∫ t

0

Xx dx + σ

∫ t

0

Xx dBx

and a non-risky asset (a bond) βt (such as a bank account)

βt = β0ert ;

here, the initial capital β0 has been continuously compounded

with a constant interest rate r . Note that we have

βt = β0 + r

∫ t

0

βx dx .



An application: Black-Scholes formula

This leads to the concept of portfolio:

Vt = at Xt + bt βt .

At time t , you hold a certain amount of shares (at in stock and

bt in bond).

The SPs (at) and (bt) are assumed to be adapted to (Bt)
(then we speak of the trading strategy (at ,bt )).

We allow for negative values of at and bt :

◮ at < 0 means short sale of stock.

◮ bt < 0 means you borrow money at the bond’s riskless

interest rate r .



An application: Black-Scholes formula

Remarks:

◮ no time-dependent interest rates; no transaction costs;

◮ no boundedness conditions on at and bt ;

◮ you spend no money on other purposes (i.e., you do not

make your portfolio smaller by consumption);

◮ we restrict to self-financing trading strategies, i.e.,

dVt = d
(

at Xt + bt βt

)

= at dXt + bt dβt ,

so that

Vt − V0 =

∫ t

0

ax dXx +

∫ t

0

bx dβx .

Your wealth at time t is given by your initial wealth + the capital

gains from stock and bond up to time t (no extra source of money).



An application: Black-Scholes formula

In this setup, the BS formula tells what is the rational price for a

European call option.

What is a European call option (ECO)?

It is a ticket (you buy at time t = 0, say) that entitles you to buy

one share of stock at a fixed price K (the exercise price or strike

price) at a fixed time T (the time of maturity or time of expiration).

The holder of the option is not obliged to exercise it (it would be

silly to do so if XT < K !) The holder is therefore entitled to a

payment of

(XT − K )+ = max(XT − K ,0).



An application: Black-Scholes formula

The value of a European call option with exercise price K at

time of maturity T :



An application: Black-Scholes formula

Of course, when you purchase the call (at time t = 0, say), you

do not know the value XT .

Problem: how much would you be willing to pay for this ticket?

The Black-scholes-Merton rule: this rational price is the value

V0 which guarantees the same payoff (by portfolio

management) as the option, namely (XT − K )+.

Remark: it can be shown that, if the price of the option is not

that rational value, then there is an opportunity of arbitrage (that

is, there exists a strategy which ensures an unbounded profit

without any risk of loss).



An application: Black-Scholes formula

Hence, to determine this rational price, we should find V0

satisfying

Vt = f (t ,Xt) = at Xt + bt βt

VT = f (T ,XT ) = (XT − K )+,

or equivalently, letting u(t ,Xt) := f (T − t ,Xt),

Vt = u(T − t ,Xt) = at Xt + bt βt

VT = u(0,XT ) = (XT − K )+.

We then want to determine the value of V0 = u(T ,X0).

Remark: we assume that u is smooth, which is clearly a

restriction.



An application: Black-Scholes formula

Principle of the computation...



An application: Black-Scholes formula

(i) By using the 2nd extension of Itô’s lemma,

VT − V0 = f (t ,Xt )− f (0,X0)

=

∫ t

0

[

f1(x ,Xx ) + ax f2(x ,Xx ) +
1

2
σ2

x f22(x ,Xx )
]

dx

+

∫ t

0

σx f2(x ,Xx )dBx

=

∫ t

0

[

f1(x ,Xx ) + cXx f2(x ,Xx ) +
1

2
σ2X 2

x f22(x ,Xx )
]

dx

+

∫ t

0

σXx f2(x ,Xx )dBx

=

∫ t

0

[

− u1(T − x ,Xx ) + cXxu2(T − x ,Xx)

+
1

2
σ2X 2

x u22(T − x ,Xx )
]

dx +

∫ t

0

σXxu2(T − x ,Xx )dBx .



An application: Black-Scholes formula

(ii)

VT − V0 =

∫ t

0

ax dXx +

∫ t

0

bx dβx

=

∫ t

0

ax (cXx dx + σXx dBx) +

∫ t

0

bx d(β0erx)

=

∫ t

0

caxXx dx +

∫ t

0

σaxXx dBx +

∫ t

0

rbxβ0erx dx

=

∫ t

0

(

caxXx + rbxβx

)

dx +

∫ t

0

σaxXx dBx

=

∫ t

0

(

caxXx + r(Vx − axXx )
)

dx +

∫ t

0

σaxXx dBx .



An application: Black-Scholes formula

Now, by using the fact that

∫ t

0

P
(1)
x dx +

∫ t

0

P
(2)
x dBx =

∫ t

0

Q
(1)
x dx +

∫ t

0

Q
(2)
x dBx

iff {

P
(1)
x = Q

(1)
x

P
(2)
x = Q

(2)
x ,

one can obtain partial differential equations satisfied by

(t , x) 7→ u(t , x), namely

u1(t , x) =
σ2

2
x2u22(t , x) + r x u2(t , x) − r u(t , x),

which has to be solved, subject to the boundary condition

u(0, x) = (x − K )+.



An application: Black-Scholes formula

The solution of this PDE is

u(t , x) = xΦ(g(t , x)) − K e−rtΦ(h(t , x)),

where Φ denotes the cdf of the standard normal distribution

and
{

g(t , x) = 1

σ
√

t

(

ln(x/K ) + (r + σ2

2 )t
)

h(t , x) = g(t , x)− σ
√

t .

Therefore, the rational price V0 for the option at time t = 0 is

V0 = u(T ,X0) = X0Φ(g(T ,X0))− K e−rTΦ(h(T ,X0)),

which is the Black-Scholes option pricing formula.



An application: Black-Scholes formula

Remarks:

◮ V0 does not depend on c.

◮ Vt = u(T − t ,Xt) gives the value of the portfolio at time t .

◮ This also allows for obtaining an explicit expression for the

corresponding trading strategy. More precisely,

at = u2(T − t ,Xt) and bt =
u(T − t ,Xt)− atXt

βt
.

It can be shown that at > 0 for all t ∈ [0,T ]. However, it

may happen that bt < 0 (hence, short sales of stock do not

occur, but borrowing money at the bond’s constant interest

rate r > 0 may become necessary).


