Stochastic Processes (Lecture #8)

Thomas Verdebout

Université Libre de Bruxelles

Outline of the course

- 1. A short introduction.
- 2. Basic probability review.
- 3. Martingales.
- 4. Markov chains.
- 5. Markov processes, Poisson processes.

6. Brownian motions.

- 6.1. Definition.
- 6.2. Markov property, martingales.
- 6.3. The reflection principle.

6.4. Gaussian processes and Brownian bridges.

6.5. Stochastic calculus.

BM and Gaussian processes

Let (X_t) be a SP.

Definition: (X_t) is a Gaussian process \Leftrightarrow for all k, for all $t_1 < t_2 < \ldots < t_k$, $(X_{t_1}, \ldots, X_{t_k})'$ is a Gaussian r.v.

Remark: the distribution of a Gaussian process is completely determined by

- its mean function $t \mapsto \mathbb{E}[X_t]$ and
- ▶ its autocovariance function $(s, t) \mapsto \text{Cov}[X_s, X_t]$.

Proposition: A standard BM (X_t) is a Gaussian process with mean function $t \mapsto \mathbb{E}[X_t] = 0$ and autocovariance function $(s, t) \mapsto \text{Cov}[X_s, X_t] = \min(s, t)$.

This might also be used as an alternative definition for BMs...

BM and Gaussian processes

Proof: let (X_t) be a standard BM.

(i) For
$$s < t$$
, $X_t - X_s \stackrel{\mathcal{D}}{=} X_{t-s} - X_{s-s} = X_{t-s} \sim \mathcal{N}(0, t-s)$.

By using the independence between disjoint increments, we obtain, for $0 =: t_0 < t_1 < t_2 < \ldots < t_k$,

$$\left(egin{array}{c} X_{t_1} - X_0 \ X_{t_2} - X_{t_1} \ dots \ X_{t_k} - X_{t_{k-1}} \end{array}
ight) \sim \mathcal{N}(\mathbf{0}, \Lambda),$$

where $\Lambda = (\lambda_{ij})$ is diagonal with $\lambda_{ii} = t_i - t_{i-1}$.

BM and Gaussian processes

Hence,

$$\sum_{i=1}^{k} v_i X_{t_i} = v' \begin{pmatrix} X_{t_1} \\ X_{t_2} \\ \vdots \\ X_{t_k} \end{pmatrix} = v' \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} X_{t_1} - X_0 \\ X_{t_2} - X_{t_1} \\ \vdots \\ X_{t_k} - X_{t_{k-1}} \end{pmatrix}$$

is normally distributed, so that (X_t) is a Gaussian process.

(ii) Clearly, $t \mapsto \mathbb{E}[X_t] = 0$ for all t.

(iii) Eventually, assuming that s < t, we have

$$\operatorname{Cov}[X_s, X_t] = \operatorname{Cov}[X_s, X_s + (X_t - X_s)] = \operatorname{Var}[X_s] + \operatorname{Cov}[X_s, X_t - X_s] =$$
$$= s + \operatorname{Cov}[X_s - X_0, X_t - X_s] = s + 0 = \min(s, t).$$

Brownian bridges

Let $(X_t)_{t\geq 0}$ be a BM.

Definition: if (X_t) is a BM, $(X_t - tX_1)_{0 \le t \le 1}$ is a Brownian bridge.

Alternatively, it can be defined as a Gaussian process (over (0, 1)) with mean function $t \mapsto \mathbb{E}[X_t] = 0$ and autocovariance function $(s, t) \mapsto \text{Cov}[X_s, X_t] = \min(s, t)(1 - \max(s, t))$ (exercise).

Application:

Let X_1, \ldots, X_n be i.i.d. with cdf F. Let $F_n(x) := \frac{1}{n} \sum_{i=1}^n \mathbb{I}_{[X_i \le x]}$ be the empirical cdf.

The LLN implies that $F_n(x) \stackrel{a.s.}{\to} \mathbb{E}[\mathbb{I}_{[X_1 \leq x]}] = F(x)$ as $n \to \infty$. Actually, it can be shown that $\sup_{x \in \mathbb{R}} |F_n(x) - F(x)| \stackrel{a.s.}{\to} 0$ as $n \to \infty$ (Glivenko-Cantelli theorem).

Brownian bridges

Assume that
$$X_1, ..., X_n$$
 are i.i.d. Unif $(0, 1)$
 $(F(x) = x \mathbb{I}_{[x \in [0,1]]} + \mathbb{I}_{[x>1]}).$
Let $U_n(x) := \frac{1}{\sqrt{n}} \sum_{i=1}^n (\mathbb{I}_{[X_i \le x]} - x), x \in [0,1].$

Then it can be shown that, as $n \to \infty$,

$$\sup_{x\in[0,1]}|U_n(x)|\stackrel{\mathcal{D}}{\to}\sup_{x\in[0,1]}|U(x)|,$$

where $(U(x))_{0 \le x \le 1}$ is a Brownian bridge (Donsker's theorem). Coming back to the setup where X_1, \ldots, X_n are i.i.d. with (unknown) cdf *F*, the result above allows for testing

$$\begin{cases} \mathcal{H}_0: & F = F_0 \\ \mathcal{H}_1: & F \neq F_0, \end{cases}$$

where F_0 is some fixed (continuous) cdf.

Brownian bridges

The so-called Kolmogorov-Smirnov test consists in rejecting \mathcal{H}_0 if the value of

$$\sup_{x \in [0,1]} |U_n(x)| := \sup_{x \in [0,1]} \left| \frac{1}{\sqrt{n}} \sum_{i=1}^n \left(\mathbb{I}_{[F_0(X_i) \le x]} - x \right) \right|$$

exceeds some critical value (that is computed from Donsker's theorem).

This is justified by the fact that, under \mathcal{H}_0 , $F_0(X_1), \ldots, F_0(X_n)$ are i.i.d. Unif(0, 1) (exercise).

Outline of the course

- 1. A short introduction.
- 2. Basic probability review.
- 3. Martingales.
- 4. Markov chains.
- 5. Markov processes, Poisson processes.

6. Brownian motions.

- 6.1. Definition.
- 6.2. Markov property, martingales.
- 6.3. The reflection principle.
- 6.4. Gaussian processes and Brownian bridges.

6.5. Stochastic calculus.

Stochastic calculus

Recall the definition of a (S)BM:

Definition: the SP $(X_t)_{t>0}$ is a standard Brownian motion \Leftrightarrow

- ► $X_0 = 0.$
- for all t > 0, $X_t \sim \mathcal{N}(0, t)$;
- the increments in disjoint time-intervals are \perp , i.e.

 the increments in equal-length time-intervals are stationary, i.e.

$$\forall s, t > 0, \quad X_{t+s} - X_t \stackrel{\mathcal{D}}{=} X_s - X_0;$$

• the sample paths of $(X_t)_{t\geq 0}$ are a.s. continuous.

In stochastic finance, it is crucial to be able to define integrals such as $\int_0^t C_x dB_x$, where $(C_x)_{x\geq 0}$ is some SP that is adapted to the SBM $(B_x)_{x\geq 0}$.

The first idea is to mimic (pathwise) the definition of

$$\int_0^t f(x) \, dg(x) = \lim_{\max(t_i - t_{i-1}) \to 0} \sum_{i=1}^n f(y_i) \left[g(t_i) - g(t_{i-1}) \right],$$

where $0 = t_0 < t_1 < \ldots < t_n = t$ and y_i is an arbitrary point in $[t_{i-1}, t_i]$.

 \rightsquigarrow this leads to the temptative definition

$$\left(\int_0^t C_X \, dB_x\right)(\omega) = \lim_{\max(t_i - t_{i-1}) \to 0} \sum_{i=1}^n C_{y_i}(\omega) \left[B_{t_i}(\omega) - B_{t_{i-1}}(\omega)\right].$$

However, as $t \mapsto B_t$ is (a.s.) nowhere differentiable, this limit does not exist for all (C_x).

Therefore, we will rather adopt a stochastic limit as a definition: **Definition**:

$$\int_0^t C_x \, dB_x = L^2 - \lim_{\max(t_i - t_{i-1}) \to 0} \sum_{i=1}^n C_{t_{i-1}} \left[B_{t_i} - B_{t_{i-1}} \right].$$

Remarks:

- ► unlike in the pathwise definition, the result may depend on the point y_i ∈ [t_{i-1}, t_i). Therefore, we fix y_i = t_{i-1};
- this concept is called Itô stochastic integral.

In some cases, this integral can be computed explicitly from the definition.

Example: $\int_0^t B_x dB_x = ?$ Letting $\Delta_i B := B_{t_i} - B_{t_{i-1}}$ and $\Delta_i t := t_i - t_{i-1}$, we have $\sum_{i} B_{t_{i-1}}(\Delta_{i}B) = \sum_{i} (B_{t_{i-1}}B_{t_{i}} - B_{t_{i-1}}^{2})$ $= \frac{1}{2} \sum_{i} \left[\left(B_{t_i}^2 - B_{t_{i-1}}^2 \right) - \left(B_{t_i} - B_{t_{i-1}} \right)^2 \right]$ $=\frac{1}{2}(B_{t}^{2}-B_{0}^{2})-\frac{1}{2}\sum_{i}(\Delta_{i}B)^{2}=\frac{1}{2}B_{t}^{2}-\frac{1}{2}\sum_{i}(\Delta_{i}B)^{2},$

and

$$\int_0^t B_x \, dB_x = L^2 - \lim_{\max_i(\Delta_i t) \to 0} \sum_i B_{t_{i-1}} \left(\Delta_i B \right).$$

Now,
$$\mathbb{E}\left[\sum_{i} (\Delta_{i}B)^{2}\right] = \sum_{i} \operatorname{Var}\left[\Delta_{i}B\right] = \sum_{i} \Delta_{i}t = t$$
 and
 $\operatorname{Var}\left[\sum_{i} (\Delta_{i}B)^{2}\right] = \sum_{i} \operatorname{Var}\left[(\Delta_{i}B)^{2}\right] = \sum_{i} (\Delta_{i}t)^{2} \operatorname{Var}\left[(\mathcal{N}(0,1))^{2}\right]$
 $= 2\sum_{i} (\Delta_{i}t)^{2} \leq 2(\max_{i}\Delta_{i}t) \sum_{i} \Delta_{i}t = 2t(\max_{i}\Delta_{i}t) \to 0.$
Hence, $\sum_{i} (\Delta_{i}B)^{2} \to t$ in L^{2} and we obtain
 $\int_{0}^{t} B_{x} dB_{x} = \frac{1}{2}B_{t}^{2} - \frac{1}{2}t.$

Remark (quadratic variation of BMs): we showed above that $\mathbb{E}[(\Delta_i B)^2] = \Delta_i t$ and that $\operatorname{Var}[(\Delta_i B)^2] = 2(\Delta_i t)^2 = o(\Delta_i t)$. This means that " $(\Delta_i B)^2$ behaves as $\Delta_i t$ " (i.e., $(dB_t)^2 = dt$).

We showed that

$$\int_0^t B_x \, dB_x = \frac{1}{2} B_t^2 - \frac{1}{2} t.$$

This result is surprising at first sight because one would expect

$$\int_0^t B_x \, dB_x = \int_0^t \, d\frac{(B_x)^2}{2} = \left[\frac{(B_x)^2}{2}\right]_0^t = \frac{1}{2}(B_t^2 - B_0^2) = \frac{1}{2}B_t^2.$$

This shows that the standard chain rule does not apply...

Standard chain rule

For standard integration,

$$df(g(x)) = f(g(x+dx)) - f(g(x)) = [f(g(x))]' dx + \frac{[f(g(x))]''}{2} (dx)^2 + \dots$$

yields

$$f(g(t)) - f(g(0)) = \int_0^t df(g(x)) = \int_0^t [f(g(x))]' dx = \int_0^t f'(g(x)) dg(x) dx$$

This is the standard chain rule.

For stochastic integration, the chain rule (with $f(x) = x^2$ and $g(x) = B_x$) yields

$$B_t^2 - B_0^2 = \int_0^t 2B_x \, dB_x \left(\neq B_t^2 - t \right)$$

and is therefore violated.

Itô's lemma

How to extend the chain rule?

From the quadratic variation of the BM,

$$df(B_x) = f(B_{x+dx}) - f(B_x) = f'(B_x) dB_x + \frac{f''(B_x)}{2} (dB_x)^2 + \dots$$
$$= f'(B_x) dB_x + \frac{f''(B_x)}{2} dx + \dots,$$

which yields

$$f(B_t) - f(B_0) = \int_0^t df(B_x) = \int_0^t f'(B_x) dB_x + \frac{1}{2} \int_0^t f''(B_x) dx.$$

This is the so-called Itô lemma.

Itô's lemma

Itô's lemma states that

$$f(B_t) - f(B_0) = \int_0^t f'(B_x) dB_x + \frac{1}{2} \int_0^t f''(B_x) dx.$$

In our example, it yields (with $f(x) = x^2$)

$$B_t^2 - B_0^2 = \int_0^t 2B_x \, dB_x + \frac{1}{2} \int_0^t 2 \, dx = \int_0^t 2B_x \, dB_x + t,$$

which provides our result

$$\int_0^t B_x \, dB_x = \frac{1}{2} B_t^2 - \frac{1}{2} t.$$

Itô's lemma: extension 1

Let $f : \mathbb{R}^2 \to \mathbb{R}$ with partial derivatives $f_1, f_2, f_{11}, f_{12}, f_{22}$, etc. Then

$$df(x, B_x) = f_1(x, B_x) dx + f_2(x, B_x) dB_x + \frac{f_{11}(x, B_x)}{2} (dx)^2 + \frac{f_{22}(x, B_x)}{2} (dB_x)^2 + f_{12}(x, B_x) dx dB_x + \dots = \left[f_1(x, B_x) + \frac{f_{22}(x, B_x)}{2}\right] dx + f_2(x, B_x) dB_x + \dots,$$

which yields

$$f(t,B_t)-f(0,B_0) = \int_0^t \left[f_1(x,B_x) + \frac{f_{22}(x,B_x)}{2}\right] dx + \int_0^t f_2(x,B_x) dB_x.$$

Geometric Brownian motion

Let (B_t) be a standard BM. Then a geometric BM is defined as

$$X_t = X_0 \exp\left((c - \frac{\sigma^2}{2})t + \sigma B_t\right) = f(t, B_t),$$

where $f(x, y) = X_0 \exp\left(\left(c - \frac{\sigma^2}{2}\right)x + \sigma y\right)$.

The previous extension of the Itô lemma yields

$$\begin{aligned} X_t - X_0 &= f(t, B_t) - f(0, B_0) = \int_0^t \left[\left(c - \frac{\sigma^2}{2} \right) f(x, B_x) + \frac{\sigma^2 f(x, B_x)}{2} \right] dx \\ &+ \int_0^t \sigma f(x, B_x) \, dB_x = c \int_0^t X_x \, dx + \sigma \int_0^t X_x \, dB_x. \end{aligned}$$

Such a process is called an Itô process.

Geometric Brownian motion

Differentiating, we obtain

$$dX_t = cX_t \, dt + \sigma X_t \, dB_t,$$

that is, $\frac{X_{t+dt} - X_t}{X_t} = c \, dt + \sigma \, dB_t.$

In words, the relative return from the asset in [t, t + dt] is given by a linear trend disturbed by a stochastic noise term; *c* is the so-called mean rate of return and σ is the volatility (which is a measure of the riskiness of the asset).

The geometric BM should be thought of as a randomly perturbed exponential function (if $\sigma = 0$, $X_t = X_0 \exp(ct)$).

People in economics believe in exponential growth. Hence, they are quite satisfied with this model...

Itô's lemma: extension 2

Consider the process $(f(t, X_t))_{t \ge 0}$, where

$$X_t = X_0 + \int_0^t a_x \, dx + \int_0^t \sigma_x \, dB_x,$$

where (a_x) and (σ_x) are adapted to (B_x) .

Then

$$f(t, X_t) - f(0, X_0) = \int_0^t \left[f_1(x, X_x) + a_x f_2(x, X_x) + \frac{1}{2} \sigma_x^2 f_{22}(x, X_x) \right] dx + \int_0^t \sigma_x f_2(x, X_x) dB_x.$$

Consider a risky asset

$$X_t = X_0 + c \int_0^t X_x \, dx + \sigma \int_0^t X_x \, dB_x$$

and a non-risky asset (a bond) β_t (such as a bank account)

$$\beta_t = \beta_0 e^{rt};$$

here, the initial capital β_0 has been continuously compounded with a constant interest rate *r*. Note that we have

$$\beta_t = \beta_0 + r \int_0^t \beta_x \, dx.$$

This leads to the concept of portfolio:

$$V_t = a_t X_t + b_t \beta_t.$$

At time *t*, you hold a certain amount of shares (a_t in stock and b_t in bond).

The SPs (a_t) and (b_t) are assumed to be adapted to (B_t) (then we speak of the trading strategy (a_t, b_t)).

We allow for negative values of a_t and b_t :

- $a_t < 0$ means short sale of stock.
- *b_t* < 0 means you borrow money at the bond's riskless interest rate *r*.

Remarks:

- no time-dependent interest rates; no transaction costs;
- no boundedness conditions on a_t and b_t;
- you spend no money on other purposes (i.e., you do not make your portfolio smaller by consumption);
- we restrict to self-financing trading strategies, i.e.,

$$dV_t = d(a_t X_t + b_t \beta_t) = a_t dX_t + b_t d\beta_t,$$

so that

$$V_t - V_0 = \int_0^t a_x \, dX_x + \int_0^t b_x \, d\beta_x.$$

Your wealth at time t is given by your initial wealth + the capital gains from stock and bond up to time t (no extra source of money).

In this setup, the BS formula tells what is the rational price for a European call option.

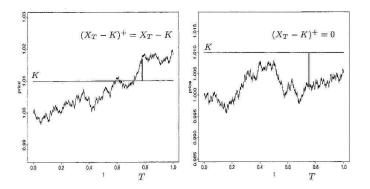
What is a European call option (ECO)?

It is a ticket (you buy at time t = 0, say) that entitles you to buy one share of stock at a fixed price K (the exercise price or strike price) at a fixed time T (the time of maturity or time of expiration).

The holder of the option is not obliged to exercise it (it would be silly to do so if $X_T < K$!) The holder is therefore entitled to a payment of

$$(X_T - K)^+ = \max(X_T - K, 0).$$

The value of a European call option with exercise price K at time of maturity T:



Of course, when you purchase the call (at time t = 0, say), you do not know the value X_T .

Problem: how much would you be willing to pay for this ticket?

The Black-scholes-Merton rule: this rational price is the value V_0 which guarantees the same payoff (by portfolio management) as the option, namely $(X_T - K)^+$.

Remark: it can be shown that, if the price of the option is not that rational value, then there is an opportunity of arbitrage (that is, there exists a strategy which ensures an unbounded profit without any risk of loss).

Hence, to determine this rational price, we should find V_0 satisfying

$$V_t = f(t, X_t) = a_t X_t + b_t \beta_t$$
$$V_T = f(T, X_T) = (X_T - K)^+,$$

or equivalently, letting $u(t, X_t) := f(T - t, X_t)$,

$$V_t = u(T - t, X_t) = a_t X_t + b_t \beta_t$$
$$V_T = u(0, X_T) = (X_T - K)^+.$$

We then want to determine the value of $V_0 = u(T, X_0)$.

Remark: we assume that *u* is smooth, which is clearly a restriction.

Principle of the computation...

(i) By using the 2nd extension of Itô's lemma,

$$\begin{split} V_{T} - V_{0} &= f(t, X_{t}) - f(0, X_{0}) \\ &= \int_{0}^{t} \left[f_{1}(x, X_{x}) + a_{x} f_{2}(x, X_{x}) + \frac{1}{2} \sigma_{x}^{2} f_{22}(x, X_{x}) \right] dx \\ &+ \int_{0}^{t} \sigma_{x} f_{2}(x, X_{x}) dB_{x} \\ &= \int_{0}^{t} \left[f_{1}(x, X_{x}) + cX_{x} f_{2}(x, X_{x}) + \frac{1}{2} \sigma^{2} X_{x}^{2} f_{22}(x, X_{x}) \right] dx \\ &+ \int_{0}^{t} \sigma X_{x} f_{2}(x, X_{x}) dB_{x} \\ &= \int_{0}^{t} \left[-u_{1}(T - x, X_{x}) + cX_{x} u_{2}(T - x, X_{x}) \right] \\ &+ \frac{1}{2} \sigma^{2} X_{x}^{2} u_{22}(T - x, X_{x}) \right] dx + \int_{0}^{t} \sigma X_{x} u_{2}(T - x, X_{x}) dB_{x}. \end{split}$$

(ii)

$$V_{T} - V_{0} = \int_{0}^{t} a_{x} dX_{x} + \int_{0}^{t} b_{x} d\beta_{x}$$

$$= \int_{0}^{t} a_{x} (cX_{x} dx + \sigma X_{x} dB_{x}) + \int_{0}^{t} b_{x} d(\beta_{0} e^{rx})$$

$$= \int_{0}^{t} ca_{x} X_{x} dx + \int_{0}^{t} \sigma a_{x} X_{x} dB_{x} + \int_{0}^{t} rb_{x} \beta_{0} e^{rx} dx$$

$$= \int_{0}^{t} (ca_{x} X_{x} + rb_{x} \beta_{x}) dx + \int_{0}^{t} \sigma a_{x} X_{x} dB_{x}$$

$$= \int_{0}^{t} (ca_{x} X_{x} + r(V_{x} - a_{x} X_{x})) dx + \int_{0}^{t} \sigma a_{x} X_{x} dB_{x}.$$

Now, by using the fact that

iff

$$\int_{0}^{t} P_{x}^{(1)} dx + \int_{0}^{t} P_{x}^{(2)} dB_{x} = \int_{0}^{t} Q_{x}^{(1)} dx + \int_{0}^{t} Q_{x}^{(2)} dB_{x}$$
$$\begin{cases} P_{x}^{(1)} = Q_{x}^{(1)} \\ P_{x}^{(2)} = Q_{x}^{(2)}, \end{cases}$$

one can obtain partial differential equations satisfied by $(t, x) \mapsto u(t, x)$, namely

$$u_1(t,x) = \frac{\sigma^2}{2} x^2 u_{22}(t,x) + r x u_2(t,x) - r u(t,x),$$

which has to be solved, subject to the boundary condition

$$u(0,x)=(x-K)^+.$$

The solution of this PDE is

$$u(t,x) = x\Phi(g(t,x)) - K e^{-rt}\Phi(h(t,x)),$$

where Φ denotes the cdf of the standard normal distribution and $\left(\begin{array}{c} a(t,x) = \frac{1}{2} \left(\ln(x/K) + (r + \frac{\sigma^2}{2})t \right) \end{array} \right)$

$$\begin{cases} g(t,x) = \frac{1}{\sigma\sqrt{t}} \left(\ln(x/K) + \left(r + \frac{\sigma^{-}}{2}\right) t \right) \\ h(t,x) = g(t,x) - \sigma\sqrt{t}. \end{cases}$$

Therefore, the rational price V_0 for the option at time t = 0 is

$$V_0 = u(T, X_0) = X_0 \Phi(g(T, X_0)) - K e^{-rT} \Phi(h(T, X_0)),$$

which is the Black-Scholes option pricing formula.

Remarks:

- V_0 does not depend on c.
- $V_t = u(T t, X_t)$ gives the value of the portfolio at time t.
- This also allows for obtaining an explicit expression for the corresponding trading strategy. More precisely,

$$a_t = u_2(T-t, X_t)$$
 and $b_t = \frac{u(T-t, X_t) - a_t X_t}{\beta_t}$.

It can be shown that $a_t > 0$ for all $t \in [0, T]$. However, it may happen that $b_t < 0$ (hence, short sales of stock do not occur, but borrowing money at the bond's constant interest rate r > 0 may become necessary).