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Outline of the course

1. A short introduction.

2. Basic probability review.
3. Martingales.

4. Markov chains.

5. Markov processes, Poisson processes.

6. Brownian motions. |
6.1. Definition.

6.2. Markov property, martingales.
6.3. The reflection principle.

6.4. Gaussian processes and Brownian bridges.

6.5. Stochastic calculus.



BM and Gaussian processes

Let (X;) be a SP.

Definition: (X;) is a Gaussian process « for all k, for all
h<b<... <t (X,...,X) isaGaussianr.v.

Remark: the distribution of a Gaussian process is completely
determined by

» its mean function t — E[X;] and
» its autocovariance function (s, t) — Cov[Xs, Xi].

Proposition: A standard BM (X;) is a Gaussian process with
mean function t — E[X;] = 0 and autocovariance function
(s,t) — Cov[Xs, Xi] = min(s, t).

This might also be used as an alternative definition for BMs...



BM and Gaussian processes

Proof: let (X;) be a standard BM.

() Fors < t, Xi — Xs 2 Xi_s — Xos = Xt_s ~ N(0, 1 — ).

By using the independence between disjoint increments, we
obtain,forO=:fh < i < b <... <k,

Xy, — Xo
th _ Xf1 ~ N(07/\)’
ka _-th—1

where A = (\j) is diagonal with \j = t; — ti_1.



BM and Gaussian processes

Hence,
X _
k f4 1 Xy — %o
Xi -3 XX
Z ViXt,- -V :tz -V i ? Al1 ) t : ty
i=1 . ’ —i 1 X —.X
th tk tk—1

is normally distributed, so that (X;) is a Gaussian process.
(ii) Clearly, t — E[X;] = 0 for all £.
(iii) Eventually, assuming that s < t, we have

Cov[Xs, Xi] = Cov[Xs, Xs+(Xi—Xs)] = Var[Xs]+Cov[Xs, Xi—Xs] =

= 5+ Cov[Xs — Xo, Xt — Xs] = s+ 0 = min(s, t).
O



Brownian bridges

Let (Xt)tz() be a BM.

Definition: if (X;) is a BM, (X; — tX1)o<t<1 is @ Brownian
bridge.

Alternatively, it can be defined as a Gaussian process (over
(0, 1)) with mean function t — E[X;] = 0 and autocovariance
function (s, t) — Cov[Xs, Xi] = min(s, t)(1 — max(s, t))
(exercise).

Application:

Let Xi,..., X, bei.i.d. with cdf F.
Let Fn(x) := 237 | Tjx.<x be the empirical cdf.

The LLN implies that Fj(x) 3 E[Ijx,<x] = F(x) as n — cc.

Actually, it can be shown that sup,g |Fa(x) — F(x)| 23 0 as n — oo
(Glivenko-Cantelli theorem).



Brownian bridges

Assume that Xj, ..., X, are i.i.d. Unif(0, 1)
(F(X) = XIjxeqo, 7 + Ixs17)-
Let Un(X) = % 2?21 (]I[X,SX] - X), X e [0, 1]

Then it can be shown that, as n — oo,

sup |Un(x)| 5 SUIO [U(x);
x€[0,1]

where (U(x))o<x<1 is @ Brownian bridge (Donsker’s theorem).

Coming back to the setup where Xj, ..., X, are i.i.d. with
(unknown) cdf F, the result above aIIows for testing

Ho: F=Fy

7‘[1 . F 75 Fo,

where Fqy is some fixed (continuous) cdf.



Brownian bridges

The so-called Kolmogorov-Smirnov test consists in rejecting Hg
if the value of

sup |Un(x)| := sup
x€[0,1] x€[0,1]

1 n
NG ; (H[Fo(Xf)SX] - X)

exceeds some critical value (that is computed from Donsker’s
theorem).

This is justified by the fact that, under Hg, Fo(X1),.- .., Fo(Xn)
are i.i.d. Unif(0, 1) (exercise).
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Stochastic calculus

Recall the definition of a (S)BM:

Definition: the SP (X;):>¢ is a standard Brownian motion <

» Xo=0.

forall t > 0, X; ~ N(0, t);

the increments in disjoint time-intervals are L, i.e.

VO<th <b<...<tl, X=X, Xee—Xpp,...,Xe,—Xp,_, are 1L;

v

v

v

the increments in equal-length time-intervals are
stationary, i.e.

VS, t>0, Xees— Xt 2 Xs — Xo;

v

the sample paths of (X);>o are a.s. continuous.



Stochastic integrals

In stochastic finance, it is crucial to be able to define integrals
such as fot Cx dBx, where (Cx)x>0 is some SP that is adapted
to the SBM (By)x>0-

The first idea is to mimic (pathwise) the definition of

/ H(0dg00 = fim ny, 9(t) — 9(t-1)].

max(ti—t_1)—0
where 0 =1y < t; < ... < t, =t and y; is an arbitrary pointin [t;,_1, {;].

~» this leads to the temptative definition

</0t Cx de> (W)= lim Z Cy(w [Bt, B, (w)] '

max(ti—t_1)—0



Stochastic integrals

However, as t — B is (a.s.) nowhere differentiable, this limit
does not exist for all (Cx).

Therefore, we will rather adopt a stochastic limit as a definition:

Definition:

/ CydBy=12— lim th, 1By~ B

max(ti—ti_1)—0 %

Remarks:
» unlike in the pathwise definition, the result may depend on
the point y; € [ti_1, t;). Therefore, we fix y; = j_1;
» this concept is called It6 stochastic integral.



Stochastic integrals

In some cases, this integral can be computed explicitly from the
definition.

Example: [; By dBy =?
Letting A;B := B; — B;_, and At := t; — ti_4, we have

ZBfm (AiB) = Z(Bt, 1By — Btz 1)
- 22{ Bi\) — (By - B‘M)z}

1
B 8) - 53 (48" = 38 53 (48)"
i

N =
—~

and
/BXdBX_L2 lim ZBL (QB).

max;(A;t)—0



Stochastic integrals

Now, E[Zi(A/B)z] = Z,Var[A,-B] = ZiA,'t =tand

Var | Z (A;B)?] ZVar [(AiB)? Z(A,-t)zVar[(N(O,1))2]

=2 Z Ait)? < 2(m;f:1x Ait) Z Ajt = 2t(max Ajt) = 0.

Hence, 3, (4;8)% — tin L2 and we obtain

/thB—1BZ 1z‘
o X2t 2v

Remark (quadratic variation of BMs): we showed above that
E[(AiB)?] = Ajt and that Var[(A;B)?] = 2(A;t)? = o(Ajt). This
means that "(A,;B)? behaves as A;t" (i.e., (dB;)? = dft).



Stochastic integrals

We showed that

/BdB—— ——t

This result is surprising at first sight because one would expect

: I A (=) S (=) i LI P S N
/OBXdB_/Od - = 5| = 58 - 8) = 5B

This shows that the standard chain rule does not apply...



Standard chain rule

For standard integration,

df(g(x)) = f(g(x-+ax)—H(a(x)) = (g dxr TICN gy

2
yields

f(g(t) /df )_/[f (x))] dx = /f’

This is the standard chain rule.

For stochastic integration, the chain rule (with f(x) = x2 and
g(x) = By) yields

t
B,Z—Bg:/ 2By dBy <¢ B?—t)
0

and is therefore violated.



It6’s lemma

How to extend the chain rule?

From the quadratic variation of the BM,

f//(B )

df(Bx) = f(Byiax) — f(Bx) = f'(Bx) dBx + ——= 5

(dBx)? +

1
= '(By) dBy + f (28") ax + ...,

which yields

t t t
f(Bt)—f(Bo):/o arf(sz):/0 f’(BX)dBX+1§/0 f'(By) dx.

This is the so-called [t6 lemma.



It6’s lemma

It6’s lemma states that

t t
f(Bt)—f(Bo):/o f’(BX)dBX+%/O £(By) dx.

In our example, it yields (with f(x) = x?)

t 1 t t
B?—Bzz/ZBXdBX+§/ 2dx:/ 2By dBy +t,
JO JO 0

which provides our result

/thB—1B2 1t
o X2t 2v



It6’s lemma: extension 1

Let f : R? — R with partial derivatives f;, f, fi1, fi2, f»p, €tc.

Then
df(x, By) = f(x, By) dx + fo(x, By) dBy + @

f22(x7 BX)
=

foo(x, B
= [f1(x’ BX)_|_ ¥

(dx)?
(dBy)? + f1o(x, By) dx dBy + . ...

}dx+f2(x,BX)dBX+...,

which yields

f(t, B;)—£(0, By) = /Ot {;q (x, BX)+M} dx+/: f,(x, By) dB.



Geometric Brownian motion

Let (B;) be a standard BM. Then a geometric BM is defined as

o2

Xt = Xo exp ((C— 5

)t + aB,) — f(t,By),

where f(x,y) = Xpexp ((c — Z)X + o).

The previous extension of the It6 lemma yields

Xe—Xo = £(t, Br)—£(0, By) = /Ot [(C—J;)f(x, BX)+M] dx

t t t
+/ O-f(X, Bx) dBX = C/ XX dX+U/ XX de.
0 0 0

Such a process is called an 1t6 process.



Geometric Brownian motion

Differentiating, we obtain
aX; = Xy dt + o X; dB;,

that is, W _ cdt+odB;.
t

In words, the relative return from the asset in [t, t + df] is given
by a linear trend disturbed by a stochastic noise term; c is the
so-called mean rate of return and ¢ is the volatility (which is a
measure of the riskiness of the asset).

The geometric BM should be thought of as a randomly
perturbed exponential function (if o = 0, X; = Xy exp(ct)).

People in economics believe in exponential growth. Hence,
they are quite satisfied with this model...



It6’s lemma: extension 2

Consider the process (f(t, X;))>0, where
t t
Xt:X0+/ade+/deBX7
0 0
where (ax) and (o) are adapted to (By).

Then

t
1
F(1, Xp)— (0, Xp) = /0 (1106 X0+ @ o, X 50 oo, Xe)| 0

t
+ / O—X f2(X,Xx) de.
JO



An application: Black-Scholes formula

Consider a risky asset
t t
xtzxo+c/ Xxdx+o/ X, dBy
0 0

and a non-risky asset (a bond) g; (such as a bank account)
Bt = Boe™;

here, the initial capital gy has been continuously compounded
with a constant interest rate r. Note that we have

t
ﬂt=/30+f/0 Bx dx.



An application: Black-Scholes formula

This leads to the concept of portfolio:
Vi = ay Xi + by 5t

At time t, you hold a certain amount of shares (a; in stock and
b; in bond).

The SPs (a;) and (b;) are assumed to be adapted to (B;)
(then we speak of the trading strategy (a;, by)).

We allow for negative values of a; and by:
» a; < 0 means short sale of stock.

» b; < 0 means you borrow money at the bond’s riskless
interest rate r.



An application: Black-Scholes formula

Remarks:
» no time-dependent interest rates; no transaction costs;
» no boundedness conditions on a; and by;

» you spend no money on other purposes (i.e., you do not
make your portfolio smaller by consumption);

» we restrict to self-financing trading strategies, i.e.,
dVv; = d(at Xt + by ,Bt) = a; dX; + by dpy,
so that
t t
0 0

Your wealth at time f is given by your initial wealth + the capital
gains from stock and bond up to time t (no extra source of money).



An application: Black-Scholes formula

In this setup, the BS formula tells what is the rational price for a
European call option.

What is a European call option (ECO)?

It is a ticket (you buy at time t = 0, say) that entitles you to buy
one share of stock at a fixed price K (the exercise price or strike
price) at a fixed time T (the time of maturity or time of expiration).

The holder of the option is not obliged to exercise it (it would be
silly to do so if X7 < K!) The holder is therefore entitled to a
payment of

(XT — K)+ = max(XT — K,O).



An application: Black-Scholes formula

The value of a European call option with exercise price K at
time of maturity T

i |
| (Xr—K)t=Xr-K | ° (Xp —K)*t =0
i
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An application: Black-Scholes formula

Of course, when you purchase the call (at time t = 0, say), you
do not know the value Xr.

Problem: how much would you be willing to pay for this ticket?

The Black-scholes-Merton rule: this rational price is the value
Vo which guarantees the same payoff (by portfolio
management) as the option, namely (X7 — K)*.

Remark: it can be shown that, if the price of the option is not
that rational value, then there is an opportunity of arbitrage (that
is, there exists a strategy which ensures an unbounded profit
without any risk of loss).



An application: Black-Scholes formula

Hence, to determine this rational price, we should find Vy
satisfying

Vi = f(l’,Xt) = a; X¢ + b Bt

Vi = (T, X7) = (X7 — K)*,

or equivalently, letting u(t, X;) := f(T — t, X),

Vi=u(T —t,Xt) =at Xt + bt Bt
Vr = u(0,X7) = (X7 — K)™.

We then want to determine the value of Vo = u(T, Xp).

Remark: we assume that v is smooth, which is clearly a
restriction.



An application: Black-Scholes formula

Principle of the computation...



An application: Black-Scholes formula

(i) By using the 2nd extension of Itd’s lemma,

Vr— Vo

f( t (t, X:) — (0, Xo)

f1 (5, Xe) + ax (X, Xo) + 5% fea(X, xx)] dx

t
Ox f2

c\o

t

o

0

f1 X, Xy) + cXx Fo(X, Xy) + ;a2x oo (X, xx)} dx

/ o Xy (X, Xy) dBy

t
/ [— ui (T — x, Xx) + eXxuo(T — x, Xx)
0

1
2 2X2U22

t
(T—x XX)]der/ooXxu_g(T—x,XX)dBX.



An application: Black-Scholes formula

(if)
t t
VT - VO == / aX dXX + / bX d/BX
0 0
t t
_ / ay (CX dx + o X, dBy) + / by d(Boe™)
0 0
t t t
_ / ca X, dx + / va X, dBy + / by o™ dx
0 0 0
t t
- / (Ca)(XX + rbxﬁx) dX + / Uaxxx dBX
0 0

t t
_ / (CaxXy + r(Vx — axXy)) dx + / o ay X, dBy.
0 0



An application: Black-Scholes formula

Now, by using the fact that

t t t t
/P§1)dx+/ P,((Z)dBX:/ Q)((1)dx+/ Q® dB,
0 0 0 0

iff { P)((” _ Q)((”
P =a?,

one can obtain partial differential equations satisfied by
(t, x) — u(t, x), namely
o2
U1(t, X) = ? X2U22(t7 X) +rx UZ(t7 X) - rU(t, X)a

which has to be solved, subject to the boundary condition

u(0,x) = (x — K)*.



An application: Black-Scholes formula

The solution of this PDE is
u(t, x) = xo(g(t, x)) — K e~ "®(h(t, x)),
where ¢ denotes the cdf of the standard normal distribution

and 2
fot0- 2 (In(x/K) + (r+ )1
h(t, x) = g(t, x) — o\/'t.

Therefore, the rational price V, for the option attime t =0 is
Vo = u(T, Xo) = Xo®(g(T, X)) — K e~ To(h(T, Xp)),

which is the Black-Scholes option pricing formula.



An application: Black-Scholes formula

Remarks:
» Vj does not depend on c.
» Vi = u(T —t, X;) gives the value of the portfolio at time .

» This also allows for obtaining an explicit expression for the
corresponding trading strategy. More precisely,

T — t, Xt) — atX,
Bt '

It can be shown that a; > 0 for all t € [0, T]. However, it
may happen that b; < 0 (hence, short sales of stock do not
occur, but borrowing money at the bond’s constant interest
rate r > 0 may become necessary).

at:ug(T—t,Xt) and bt:u(



