Apprentissage non supervisé: Tests pour la position.

Hotelling test

Assume that $\mathbf{X}_1,\ldots,\mathbf{X}_n$ are i.i.d. $\mathcal{N}_p(\mu,\mathbf{\Sigma})$. We want to test $\mathcal{H}_0: \mu=\mathbf{0}$ against $\mathcal{H}_1: \mu \neq \mathbf{0}$.

The classical asymptotic test for this problem is the so-called Hotelling test that rejects the null hypothesis when

$$\mathbf{\bar{X}'S^{-1}\bar{X}} > \chi^2_{p;1-\alpha},$$

where $\mathbf{S} := n^{-1} \sum_{i=1}^{n} (\mathbf{X}_{i} - \bar{\mathbf{X}})(\mathbf{X}_{i} - \bar{\mathbf{X}})'$ and $\chi^{2}_{q;\nu}$ is the quantile of order ν of the chi-square distribution with q degrees of freedom.

We focus here on hypothesis testing in high-dimensions.

We want to consider hypothesis testing in the high-dimensional framework where $p_n \to \infty$ as $n \to \infty$.

We first consider the Gaussian location problem. That is we consider the problem of testing $\mathcal{H}_0: \mu=0$ against $\mathcal{H}_1: \mu\neq 0$.

The classical test for this problem is the Hotelling test that rejects the null (at the asymptotic level α) when

$$n\bar{\mathbf{X}}'\mathbf{S}^{-1}\bar{\mathbf{X}} > \chi^2_{p;1-\alpha}.$$

Same problem: when p>n, **S** is not invertible so that the Hotelling test is useless in practice

 \sim We consider first the case where Σ is known; we take for instance $\Sigma = \mathbf{I}_p$ and consider the statistic $n \|\bar{\mathbf{X}}\|^2$.

We consider the $n \to \infty$ and $p = p_n \to \infty$ framework.

ightarrow We need to consider triangular arrays of the form

$$\mathbf{X}_{11}$$
 with values in \mathbb{R}^{p_1-1}
 \mathbf{X}_{21} \mathbf{X}_{22} with values in \mathbb{R}^{p_2-1}
 \vdots \vdots \vdots with values in \mathbb{R}^{p_n-1}
 \vdots with values in \mathbb{R}^{p_n-1}

where, under \mathcal{H}_0 , observations in row n are i.i.d. $\mathcal{N}_{p_n}(\mathbf{0}, \mathbf{I}_{p_n})$

$$T_n = n \|\bar{\mathbf{X}}\|^2 \xrightarrow[n \to \infty]{\mathcal{D}} ???$$

Proposition

As p_n and $n \to \infty$, we have that

$$\frac{T_n-p_n}{\sqrt{2p_n}} o \mathcal{N}(0,1).$$

Proof. We have that $\sqrt{n}\bar{\mathbf{X}} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{p_n})$, so that

$$n\|\bar{\mathbf{X}}\|^2 =_{\mathcal{D}} \sum_{i=1}^{p_n} Z_i,$$

where the Z_i 's are i.i.d χ_1^2 . It follows from the CLT that

$$\frac{\sum_{i=1}^{p_n} Z_i - p_n}{\sqrt{2p_n}}$$

is asymptotically standard normal.

As a result, a natural extension of the Hotteling test in high-dimension for the specified Σ -case rejects the null at the asymptotic level α when

$$\frac{T_n-p_n}{\sqrt{2p_n}}>z_{1-\alpha},$$

where z_{ν} stand for the ν -quantile of a standard Gaussian random variable.

Now of course, the big challenge is the unspecified- Σ case, which is the "realistic case".

One idea is to replace **S** in $n\bar{\mathbf{X}}'\mathbf{S}^{-1}\bar{\mathbf{X}}$ by a regularized version of **S**, that is to consider a test statistic of the form

$$\mathcal{T}_{\mathrm{reg}}(\lambda) := n \mathbf{ar{X}}' (\mathbf{S} + \lambda \mathbf{I}_p)^{-1} \mathbf{ar{X}}$$

What is the limiting behaviour of this quantity under the null hypothesis?

First note that

$$T_{\text{reg}}(\lambda) = \sqrt{n} (\mathbf{\Sigma}^{-1/2} \bar{\mathbf{X}})' \mathbf{\Sigma}^{1/2} (\mathbf{S} + \lambda \mathbf{I}_{\rho})^{-1} \mathbf{\Sigma}^{1/2} (\sqrt{n} \mathbf{\Sigma}^{-1/2} \bar{\mathbf{X}})$$
$$= \mathbf{Z}' \mathbf{\Sigma}^{1/2} (\mathbf{S} + \lambda \mathbf{I}_{\rho})^{-1} \mathbf{\Sigma}^{1/2} \mathbf{Z},$$

where $\mathbf{Z}:=\sqrt{n}\mathbf{\Sigma}^{-1/2}\mathbf{ar{X}}\sim\mathcal{N}_{p_n}(\mathbf{0},\mathbf{I}_{p_n})$ when the \mathbf{X}_{ni} 's are i.i.d. $\mathcal{N}_{p_n}(\mathbf{0},\mathbf{\Sigma})$

Note that **Z** and **S** are independent. We have that

$$E[T_{reg}(\lambda)] = E[tr(\mathbf{Z}'\mathbf{\Sigma}^{1/2}(\mathbf{S} + \lambda \mathbf{I}_p)^{-1}\mathbf{\Sigma}^{1/2}\mathbf{Z})]$$

$$= E[tr(\mathbf{Z}\mathbf{Z}'\mathbf{\Sigma}^{1/2}(\mathbf{S} + \lambda \mathbf{I}_p)^{-1}\mathbf{\Sigma}^{1/2})]$$

$$= E[tr(\mathbf{\Sigma}^{1/2}(\mathbf{S} + \lambda \mathbf{I}_p)^{-1}\mathbf{\Sigma}^{1/2})].$$

As a result, the quantity

$$\operatorname{tr}(\mathbf{\Sigma}^{1/2}(\mathbf{S} + \lambda \mathbf{I}_{p})^{-1}\mathbf{\Sigma}^{1/2})$$

plays a really important role. Its asymptotic behavior clearly depends on the asymptotic behavior of the eigenvalues of ${\bf S}$.

Histogram of the eigenvalues of ${\bf S}$ computed from 5000 Standard Gaussian observations with p=4

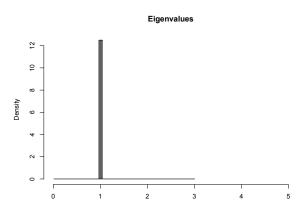


Figure: Histogram of eigenvalues

Histogram of the eigenvalues of $\bf S$ computed from 5000 Standard Gaussian observations with p=2000

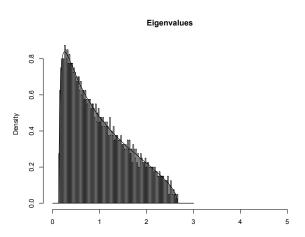


Figure: Histogram of eigenvalues

Consider the empirical spectral distribution of **S** defined as

$$F_{n,p}(t) := \frac{1}{p} \# \{\hat{\lambda}_i, \hat{\lambda}_i < t\}.$$

A milestone result by Marcenko-Pastur (1967) shows that when $p_n/n \to \gamma \in (0,1]$, $F_{n,p}(t)$ converges weakly to the *Marcenko-Pastur* distribution $F_{\mathrm{MP}}(t)$ with density

$$u \to f(u) = \frac{\sqrt{(b_{\gamma} - x)(x - a_{\gamma})}}{2\pi x \gamma},$$

where

$$a_{\gamma} := (1 - \sqrt{\gamma})^2$$
 and $b_{\gamma} := (1 + \sqrt{\gamma})^2$

The so-called *Stieltjes transform* play an important role in the proof of such results. Let $z=u+iv\in\mathbb{C}$ with v>0. The Stieltjes transform of a probability distribution F is defined as

$$s_F(z) := \int_{\mathcal{X}} \frac{1}{x - z} dF(x)$$

To show that $F_{n,p}$ converges weakly to F_{MP} , it is enough to show that the empirical Stieltjes tranform

$$s_{F_{n,p}}(z) = rac{1}{p} \sum_{i=1}^{p} rac{1}{\hat{\lambda}_{j} - z} = rac{1}{p} \mathrm{tr}((\mathbf{S} - z \mathbf{I}_{p})^{-1})$$

converges pointwise to $s_{F_{\mathrm{MP}}}(z)$, which is the Stieltjes transform of the Marcenko-Pastur distribution. Actually, this holds.

Remember that in the Hotteling test statistic we are interested in $\operatorname{tr}(\mathbf{\Sigma}^{1/2}(\mathbf{S}+\lambda\mathbf{I}_p)^{-1}\mathbf{\Sigma}^{1/2})$.

Using the fact that

$$\frac{1}{p_n}\mathrm{tr}((\mathbf{S}+\lambda\mathbf{I}_{p_n})^{-1})-s_{F_{\mathrm{MP}}}(-\lambda)=o_P(1)$$

as n with $p_n/n \to \gamma \in (0,1]$,

$$\frac{1}{p_p} \operatorname{tr}(\mathbf{\Sigma}^{1/2} (\mathbf{S} + \lambda \mathbf{I}_p)^{-1} \mathbf{\Sigma}^{1/2}) - \theta_1(\lambda, \gamma) = o_P(1)$$

as n with $p_n/n \to \gamma \in (0,1]$, where

$$heta_1(\lambda,\gamma) := rac{1-\lambda s_{\mathcal{F}_{\mathrm{MP}}}(-\lambda)}{1-\gamma(1-\lambda s_{\mathcal{F}_{\mathrm{MP}}}(-\lambda))}.$$

Based on this, they obtained that

$$\frac{\sqrt{p_n}(p_n^{-1}T_{\text{reg}}(\lambda) - \theta_1(\lambda, \gamma))}{(2\theta_2(\lambda, \gamma))^{1/2}}$$

is asymptotically standard normal under the null hypothesis where $\theta_2(\lambda,\gamma)$ is defined as

$$\theta_{2}(\lambda, \gamma) = \frac{1 - \lambda s_{F_{\mathrm{MP}}}(-\lambda)}{(1 - \gamma(1 - \lambda s_{F_{\mathrm{MP}}}(-\lambda)))^{3}} - \lambda \frac{s_{F_{\mathrm{MP}}}(-\lambda) - \lambda s'_{F_{\mathrm{MP}}}(-\lambda)}{(1 - \gamma(1 - \lambda s_{F_{\mathrm{MP}}}(-\lambda)))^{4}}$$

A test can be constructed based on estimated versions of $\theta_1(\lambda, \gamma)$ and $\theta_2(\lambda, \gamma)$.

Another interesting test for the problem is the so-called sign-test.

Consider for a moment the fixed-p case. A test for the same problem can be based on the multivariate signs

$$\mathbf{U}_{n1} := \frac{\mathbf{X}_{n1}}{\|\mathbf{X}_{n1}\|}, \dots, \mathbf{U}_{nn} := \frac{\mathbf{X}_{n1}}{\|\mathbf{X}_{nn}\|}$$

of the observations.

The signs are taking values on the unit sphere $S^{p_n-1}:=\{\mathbf{x}\in\mathbb{R}^{p_n},\mathbf{x}'\mathbf{x}=1\}$

Assume that the \mathbf{X}_{ni} 's are i.i.d. $\mathcal{N}_{p_n}(\mathbf{0}, \mathbf{I}_{p_n})$ under the null hypothesis. The signs are uniformly distributed on $\mathcal{S}^{p_n-1} := \{\mathbf{x} \in \mathbb{R}^{p_n}, \mathbf{x}'\mathbf{x} = 1\}$.

Let ${\bf U}\sim {\rm unif}(\mathcal{S}^{p-1})$, then ${\bf OU}=_{\mathcal D}{\bf U}$ for any rotation ${\bf O}$. In particular ${\bf U}=_{\mathcal D}-{\bf U}$, so that

$$E[U] = 0.$$

Moreover

$$\operatorname{Var}[\mathbf{U}] := \operatorname{E}[\mathbf{U}\mathbf{U}'] = \frac{1}{\rho}\mathbf{I}_{\rho}.$$

Therefore, letting $\bar{\mathbf{U}} := n^{-1} \sum_{i=1}^{n} \mathbf{U}_{ni}$, the central limit theorem entails that in the fixed- p_n case,

$$np\|\bar{\mathbf{U}}\| \to_{\mathcal{D}} \chi_p^2$$

as $n \to \infty$ when the \mathbf{U}_{ni} 's are uniformly distributed on \mathcal{S}^{p_n-1}

We need to consider triangular arrays of observations of the form

We assume that $\mathbf{U}_{n1}, \mathbf{U}_{n2}, \dots, \mathbf{U}_{nn}$ are mutually independent from the uniform distribution on \mathcal{S}^{p_n-1} .

Denote the corresponding sequence of hypotheses as $P_0^{(n)}$. What is the asymptotic distribution of $R_n = np \|\bar{\mathbf{U}}\|^2$ under $P_0^{(n)}$ if $p_n \to \infty$?

► The fixed-p asymptotic result

$$R_n \xrightarrow[n \to \infty]{\mathcal{L}} \chi_p^2$$

leads to

$$\frac{R_n - p}{\sqrt{2p}} \xrightarrow[n \to \infty]{\mathcal{L}} \frac{\chi_p^2 - p}{\sqrt{2p}} = \frac{\chi_p^2 - \mathrm{E}[\chi_p^2]}{\sqrt{\mathrm{Var}[\chi_p^2]}} \xrightarrow[p \to \infty]{} \mathcal{N}(0, 1).$$

▶ This suggests the (n, p)-asymptotic result

$$\frac{R_n-p}{\sqrt{2p}} \xrightarrow[n,p\to\infty]{\mathcal{L}} \mathcal{N}(0,1).$$

▶ Is this heuristics valid? That is, is there a sequence $(p_n) \to \infty$ such that

$$R_n^{St} = rac{R_n - p_n}{\sqrt{2p_n}} \xrightarrow[n o \infty]{\mathcal{L}} \mathcal{N}(0,1)$$
?

Yes (Paindaveine, D., and Verdebout, T. (2016). On high-dimensional sign tests. *Bernoulli*)

Rewrite the Rayleigh statistic as

$$R_n = np_n \|\bar{\mathbf{X}}_n\|^2 = \frac{p_n}{n} \sum_{i,j=1}^n \mathbf{U}'_{ni} \mathbf{U}_{nj} = p_n + \frac{2p_n}{n} \sum_{1 \le i < j \le n}^n \mathbf{U}'_{ni} \mathbf{U}_{nj},$$

so that

$$R_n^{\text{St}} = \frac{R_n - p_n}{\sqrt{2p_n}} = \frac{\sqrt{2p_n}}{n} \sum_{1 \le i \le n}^n \mathbf{U}'_{ni} \mathbf{U}_{nj}.$$

► To study this U-statistic with an order-2 kernel depending on $p = p_n$, write

$$R_n^{\mathrm{St}} = \sum_{\ell=1}^n D_{n\ell},$$

where the random variables $(E_{n\ell}[\,\cdot\,]=E_{n\ell}[\,\cdot\,|m{U}_1,\ldots,m{U}_\ell])$

$$D_{n\ell} = \mathrm{E}_{n\ell}[R_n^{\mathrm{St}}] - \mathrm{E}_{n,\ell-1}[R_n^{\mathrm{St}}] = \frac{\sqrt{2p_n}}{n} \sum_{i=1}^{\ell-1} \mathbf{U}'_{ni} \mathbf{U}_{n\ell}, \qquad \ell = 1, \ldots, n,$$

form a martingale difference process.

Theorem (Billingsley (1995), Theorem 35.12)

Let $D_{n\ell}$, $\ell=1,\ldots,n$, $n=1,2,\ldots$, be a triangular array of random variables such that, for any $n,\,D_{n1},D_{n2},\ldots,D_{nn}$ is a martingale difference sequence with respect to some filtration $\mathcal{F}_{n1},\mathcal{F}_{n2},\ldots,\mathcal{F}_{nn}$ (with $\mathcal{F}_{n0}:=\{\emptyset,\Omega\}$). Assume that $\mathrm{E}[D_{n\ell}^2]<\infty$ for any n,ℓ , and that

$$\sum_{\ell=1}^{n} \mathrm{E}\left[D_{n\ell}^{2} \mid \mathcal{F}_{n,\ell-1}\right] \xrightarrow[n \to \infty]{\mathrm{P}} 1 \tag{1.1}$$

(where $\stackrel{\mathrm{P}}{ o}$ denotes convergence in probability), and

$$\sum_{\ell=1}^{n} \mathrm{E}\big[D_{n\ell}^{2} \mathbb{I}[|D_{n\ell}| > \varepsilon]\big] \xrightarrow[n \to \infty]{} 0. \tag{1.2}$$

Then $\sum_{\ell=1}^{n} D_{n\ell}$ is asymptotically standard normal.

We first consider alternatives associated with triangular arrays of the form

$$egin{array}{lll} egin{array}{lll} egin{arra$$

where $\mathbf{X}_{n1}, \mathbf{X}_{n2}, \dots, \mathbf{X}_{nn}$ are mutually independent from the rotationally symmetric distribution $P_{\boldsymbol{\theta}_n,\kappa_n,f}$ with density

$$\mathbf{x} \mapsto f(\kappa_n \mathbf{x}' \boldsymbol{\theta}_n);$$

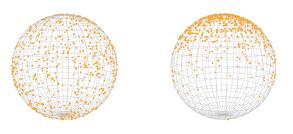
here, the sequence $(\boldsymbol{\theta}_n)$ is such that $\boldsymbol{\theta}_n \in \mathcal{S}^{p_n-1}$ for any n, (κ_n) is a positive sequence, and $f: \mathbb{R} \mapsto \mathbb{R}^+$ is fixed.

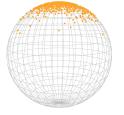
We denote the corresponding sequence of hypotheses as $P_{\theta_n,\kappa_n,f}^{(n)}$.

The Rayleigh test is the likelihood ratio test for testing uniformity against absolutely continuous alternatives with densities

$$\mathbf{u}\mapsto c_{p,\kappa}\exp(\kappa\,\mathbf{u}'\boldsymbol{\theta}),$$

with $\kappa > 0$





 $\kappa \rightarrow 0$

 $\kappa = 3$

 $\kappa = 10$

The larger κ , the more concentrated the distribution is about θ $\kappa \to 0$ corresponds to $\mathrm{Unif}(S^{p-1})$

Proposition (Cutting, Paindaveine and Verdebout (2017), *Annals of Statistics*)

Let (p_n) be a sequence of positive integers diverging to ∞ .

Let (θ_n) be a sequence such that $\theta_n \in \mathcal{S}^{p_n-1}$ for all n.

Then,

(i) if $\kappa_n = \tau p_n^{3/4}/\sqrt{n}$ ($\tau > 0$), the asymptotic power of Rayleigh, under $P_{\theta_n,\kappa_n,f}^{(n)}$, is

$$1 - \Phi\left(\Phi^{-1}(1-\alpha) - \frac{\tau^2}{\sqrt{2}}\right).$$

(ii) if $\kappa_n = o(p_n^{3/4}/\sqrt{n})$, its asymptotic power is α .

We furthemore obtain that the Rayleigh is locally and asymptotically most powerfull within the class of rotation-invariant tests in high-dimension.

The first optimality result in high-dimension to the best of our knowledge!