Apprentissage non supervisé: Tests pour
la position.



Hotelling test

Assume that Xy, ..., X, are i.i.d. Np(g,X). We want to test
Ho : p = 0 against Hy : p # 0.

The classical asymptotic test for this problem is the so-called Hotelling
test that rejects the null hypothesis when

)‘(/5—1)‘( > X;2);1—a)

where S := n"1 Y7, (X; — X)(X; — X) and X2, is the quantile of
order v of the chi-square distribution with g degrees of freedom.
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We focus here on hypothesis testing in high-dimensions.

We want to consider hypothesis testing in the high-dimensional
framework where p, — oo as n — oo.

We first consider the Gaussian location problem. That is we consider
the problem of testing Hg : 0 = 0 against H; : pu # 0.
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The classical test for this problem is the Hotelling test that rejects the
null (at the asymptotic level o) when

nX'STIX > 2 .
Same problem: when p > n, S is not invertible so that the Hotelling

test is useless in practice

~» We consider first the case where ¥ is known; we take for instance
¥ =1, and consider the statistic n||X||2.
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We consider the n — oo and p = p, — oo framework.

~» We need to consider triangular arrays of the form

X11 with values in RP1—1
Xo1 X with values in RP2—1
X1t X2 ... Xon with values in RP7—1

where, under H, observations in row n are i.i.d. NV}, (0,1,,)

T, = n||X|2 2= 777
n (o]
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Proposition
As p, and n — oo, we have that

Th— Pn
N — N(0,1).

Proof. We have that \/nX ~ N(0,1,,), so that
— Pn
nlX|?=p ) Z,
i=1

where the Z;'s are i.i.d x2. It follows from the CLT that
?;1 Zi — Pn
2pn

is asymptotically standard normal.
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As a result, a natural extension of the Hotteling test in high-dimension

for the specified X-case rejects the null at the asymptotic level a when
Th— pn
V' 2pPn

where z, stand for the v-quantile of a standard Gaussian random
variable.

> Z1—a;

Now of course, the big challenge is the unspecified-X case, which is the
“realistic case".
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One idea is to replace S in nX’S~1X by a regularized version of S, that
is to consider a test statistic of the form

Treg(A) := nX'(S + Al,) !X
What is the limiting behaviour of this quantity under the null
hypothesis?

First note that

Tig(A) = VA(E VEXYEVA(S + M) HEVA(VAE )
= 2/21/2(5_i_)\|p)flzl/2z7

where Z := \/nE"/2X ~ N, (0,1,,) when the X,;'s are i.i.d. NV, (0,X)
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Note that Z and S are independent. We have that

E[Twe(\)] = E[tr(Z’EY3(S + Al,)1E2Z)]
= E[tr(ZZ'ZV3(S + M,)71EY?)]
E[tr(ZY2(S + Al,)71ZV2)].

As a result, the quantity
tr(ZV/2(S + Al,)1EY/?)

plays a really important role. Its asymptotic behavior clearly depends on
the asymptotic behavior of the eigenvalues of S.
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Histogram of the eigenvalues of S computed from 5000 Standard
Gaussian observations with p = 4
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Figure: Histogram of eigenvalues
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Histogram of the eigenvalues of S computed from 5000 Standard
Gaussian observations with p = 2000
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Consider the empirical spectral distribution of S defined as

1 A a
Fnp(t) == E#{A,-,)\,- < t}.

A milestone result by Marcenko-Pastur (1967) shows that when
pn/n — v € (0,1], Fnp(t) converges weakly to the Marcenko-Pastur
distribution Fyp(t) with density

V(b —x)(x - a,)

u— f(u) = X

i

where

ay = (1—7)? and b, = (1+ M)
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The so-called Stieltjes transform play an important role in the proof of
such results. Let z = u+ jv € C with v > 0. The Stieltjes transform of
a probability distribution F is defined as

1
= dF
s(2) = [ = dF()
To show that F, , converges weakly to Fyrp, it is enough to show that
the empirical Stieltjes tranform

p
s =23 = Lu(s - 21
" PSA—z P

converges pointwise to sr,,.(z), which is the Stieltjes transform of the
Marcenko-Pastur distribution. Actually, this holds.

Remember that in the Hotteling test statistic we are interested in
tr(ZY/2(S + Al,)~1E?).
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Using the fact that

(S + Mpy) ™) = shue(—A) = 0p(1)

Pn

as n with p,/n — v € (0,1],

1
p—tr():l/2(5 +AL)TIEY2Y —91(X 4) = op(1)
as n with p,/n — ~ € (0, 1], where

1- )\SFMP(_/\)
1- 7(1 - )\SFMP(_)\))

O1(\, ) =
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Based on this, they obtained that

VPP Treg(A) — 01(X,7))
(202()‘77))1/2
is asymptotically standard normal under the null hypothesis where
02(A,7y) is defined as

1- /\SFMP(_/\)
(1 =7(1 = Asryp(—A)))?
SFMP(_)\) - AS;:MP(_/\)
(1 =71 = Aspyp(—A)))*

02(>‘7 '7) =

-A

A test can be constructed based on estimated versions of 61()\,~) and
92()‘a 7)
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Another interesting test for the problem is the so-called sign-test.

Consider for a moment the fixed-p case. A test for the same problem
can be based on the multivariate signs

U L= an L an
= sy, Upp 1=
T Xl [1Xnnll

of the observations.

The signs are taking values on the unit sphere
SPr—l = {x e RP" x'x = 1}
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Assume that the X,;'s are i.i.d. NV, (0,1,,) under the null hypothesis.
The signs are uniformly distributed on SP"~! := {x € RP" x/x = 1}.

Let U ~ unif(SP~1), then OU =p U for any rotation O. In particular

U =p —U, so that
E[U] = 0.

Moreover 1
Var[U] := E[UU'] = Elp.

Therefore, letting U:=n't -7 1 Upi, the central limit theorem entails
that in the fixed-p, case,

np||U] —p X3

as n — oo when the U,;'s are uniformly distributed on Spn—1
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We need to consider triangula

r arrays of observations of the form

U1 with values in SP—1
Uo;y Ux with values in SP2~1
U1 U ... U, with values in SP»—1

We assume that U,1,Uo, ..
uniform distribution on SP»~1,

., Upn are mutually independent from the

Denote the corresponding sequence of hypotheses as pin.

What is the asymptotic distribution of R, = np||U||> under P

if pp = 007

0
0



HD

» The fixed-p asymptotic result
Rn — X;zy
leads to

Ri—p ¢ Xo—pP Xx5—EN3]

V2p noe \2p \/m p—roo N(©0,2).

» This suggests the (n, p)-asymptotic result

Ro—p —£ 5 N(0,1).

A /2p n,p— 00
» |s this heuristics valid? That is, is there a sequence (p,) — oo such
that .
st n—Pn L 2
Ry = =l o N(O1) 7

Yes (Paindaveine, D., and Verdebout, T. (2016). On
high-dimensional sign tests. Bernoulli)
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» Rewrite the Rayleigh statistic as

n

- 2
Rn = ”PnHXn||2 Pn Z Uy, Un=pn+ 5n Z U/niU"j

ij=1 1<i<j<n

so that

: R, — V2 &
Rst — n pn — pn Z U/nIU
2pn N <ic<n
» To study this U-statistic with an order-2 kernel depending
on p = p,, write

Ry = Z Dre,

where the random variables (E ,,g[-] =Ep[-|U1,...,Uy])
Dy = EnZ[REt]_En,K— [RSt

form a martingale difference process.

”2”” ZU e L=1,.

.o,n,
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Theorem (Billingsley (1995), Theorem 35.12)

Let Dy, £ =1,...,n, n=1,2,..., be a triangular array of random
variables such that, for any n, Dy1, Do, ..., Dy, is @ martingale
difference sequence with respect to some filtration Fp1, Fn2, ..., Fnn
(with Fno := {0,Q}). Assume that E[D?)] < oo for any n,{ ,and that

n
S E[DZ | Fopa] ——1 (1.1)
/=1

(where B denotes convergence in probability), and
n
2
;E[DM}IHDM\ >e]] ——0. (1.2)

Then >~} _1 Dy is asymptotically standard normal.
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We first consider alternatives associated with triangular arrays of the
form

X11 with values in SPr—1
Xo1 Xoo with values in SP2~1
Xt X2 ... Xun with values in SP7—!
where Xp1, Xp2, ..., Xpp are mutually independent from the rotationally

symmetric distribution Py, . ¢ with density
x = f(knx'0p);

here, the sequence (6,) is such that 8, € SP»~! for any n, (k,) is a
positive sequence, and f : R — R is fixed.

We denote the corresponding sequence of hypotheses as Pé:)nn £
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The Rayleigh test is the likelihood ratio test for testing uniformity
against absolutely continuous alternatives with densities
u— cp . exp(ku’d),

with K > 0

k—0 k=23 k=10

The larger x, the more concentrated the distribution is about 6
% — 0 corresponds to Unif(SP~1)
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Proposition (Cutting, Paindaveine and Verdebout (2017), Annals
of Statistics)

Let (pn) be a sequence of positive integers diverging to cc.
Let (6,) be a sequence such that 6, € SP»~* for all n.
Then,
(i) if kp = Tp,37/4/ﬁ (7 > 0), the asymptotic power of Rayleigh,
under Pé:?mn,f' is
2

1 ¢<¢_1(1a) k)

(i) if kp = o(pﬁ“/ﬁ), its asymptotic power is c.
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We furthemore obtain that the Rayleigh is locally and asymptotically
most powerfull within the class of rotation-invariant tests in
high-dimension.

The first optimality result in high-dimension to the best of our
knowledge!
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