Modern Directional Statistics, Chapman & Hall, CRC press, 2017 (coauthor: C.Ley).

Edited book

Applied Directional Statistics: Modern Methods and Case Studies, Chapman & Hall, CRC press, 2019 (co-editor: C.Ley).


  1. Power enhancement for dimension detection of Gaussian signals (coauthor: G. Bernard).
  2. Boosting on the responses with Tweedie loss functions (coauthors: M.Denuit and J.Trufin).
  3. On the asymptotic behavior of the leading eigenvector of Tyler's shape estimator under weak identifiability (coauthor: D. Paindaveine).
  4. On the power of Sobolev tests of isotropy against local rotationally symmetric alternatives (coauthors: E. Garcia-Portugués and D. Paindaveine).
  5. Nonparametric tests of independence for circular data based on trigonometric moments (coauthors: E. Garcia-Portugués, P. Lafaye de Micheaux and S. Meintanis).
  6. An overview of uniformity tests on the hypersphere (coauthor: E.Garcia-Portugues).

Published or in press

  1. Asymptotic efficiency of some nonparametric tests for location on hyperspheres, Statistics and Probability Letters, to appear (coauthors: S. Dabo-Niang and B. Thiam).
  2. Preliminary Multiple-Test Estimation, with Applications to k-sample Covariance Estimation, Journal of the American Statistical Association, to appear (coauthors: D. Paindaveine and J. Rasoafaraniaina).
  3. On weighted sign tests for rotational symmetry on hyperspheres, in Directional Statistics for Innovative Applications, Springer, to appear.
  4. On some multivariate sign tests for scatter matrix eigenvalues, Econometrics and Statistics, to appear (coauthor: G. Bernard).
  5. Testing uniformity on high-dimensional spheres: the non-null behaviour of the Bingham test, Annales de l'Institut Henri Poincaré (P&S), Vol. 58, 567-602 (2022) (coauthors: C. Cutting and D. Paindaveine).
  6. Directional Statistics: Theory, Wiley Statsref online (2021).
  7. Testing for positive expectation dependence with application to model comparison, Insurance: Mathematics and Economics, Vol. 101, 163-172 (2021) (coauthors: M. Denuit and J. Trufin).
  8. Preliminary test estimation in ULAN models, Scandinavian Journal of Statistics, Vol. 48, 689-707 (2021) (coauthors: D. Paindaveine and J. Rasoafaraniaina).
  9. Optimal tests for circular reflective symmetry about an unknown central direction, Statistical Papers, Vol. 62, 1651-1674 (2021) (coauthors: J.Ameijeiras-Alonso, C.Ley, A.Pewsey).
  10. On optimal tests for rotational symmetry against new classes of hyperspherical distributions, Journal of the American Statistical Association, Vol. 115, 1873-1887 (2020) (coauthors: E.Garcia-Portugués and D.Paindaveine).
  11. Inference for spherical location under high concentration, Annals of Statistics, Vol.48, 2982-2998 (2020) (coauthor: D. Paindaveine).
  12. Sign tests for weak principal directions, Bernoulli, Vol.26, 2987-3016 (2020) (coauthors: D.Paindaveine and J.Remy).
  13. Detecting the direction of a signal on high-dimensional spheres: non-null and Le Cam optimality results, Probability Theory and Related Fields, Vol. 176, 1165-1216 (2020) (coauthor: D.Paindaveine).
  14. On new Sobolev tests of uniformity on the circle with extension to the sphere, Bernoulli, Vol. 26, 2226-2252 (2020) (coauthors: S.R. Jammalamadaka and S. Meintanis).
  15. On the power of axial tests of uniformity, Electronic Journal of Statistics, Vol.14, 2123-2154 (2020) (coauthors: C.Cutting and D.Paindaveine).
  16. Testing for principal component directions under weak identifiability, Annals of Statistics, Vol. 48, 324-345 (2020) (coauthors: D.Paindaveine and J.Remy).
  17. Le Cam maximin tests for symmetry of circular data based on the characteristic function, Statistica Sinica, Vol.29, 1301-1321 (2019) (coauthor: S.Meintanis).
  18. On the efficiency of some rank-based test for the homogeneity of concentrations, Journal of Statistical Planning and Inference, Vol.191, 101–109 (2017).
  19. Testing uniformity on high-dimensional spheres against contiguous rotationally symmetric alternatives, Annals of Statistics, Vol. 45, 1024–1058 (2017) (coauthors: C.Cutting and D.Paindaveine).
  20. Skew-rotationally-symmetric distributions on the unit sphere and related efficient inferential procedures, Journal of Multivariate Analysis, Vol. 159, 67–81 (2017) (coauthor: C.Ley).
  21. Inference on the mode of weak directional signals: a Le Cam perspective on hypothesis testing near singularities, Annals of Statistics, Vol. 45, 800–832 (2017) (coauthor: D.Paindaveine).
  22. On the estimation of the density of a directional data stream, Scandinavian Journal of Statistics, Vol. 44, 249–267 (2017) (coauthors: A.Amiri and B.Thiam).
  23. Preliminary test estimation for multi-sample principal components, Econometrics and Statistics, Vol. 2, 106–116 (2017) (coauthors: D. Paindaveine and J. Rasoafaraniaina).
  24. Efficient ANOVA for directional data, Annals of the Institute of Statistical Mathematics, Vol. 69, 39–62 (2017) (coauthors: C.Ley and Y.Swan).
  25. Tests of concentration for low-dimensional and high-dimensional directional data, In
    S. Ejaz Ahmed Ed., Big and Complex Data Analysis: Statistical Methodologies and Applications,
    Springer,Cham Heidelberg New York, 209-227 (2017)(coauthors: C.Cutting and D.Paindaveine).
  26. On high-dimensional sign tests, Bernoulli, Vol. 22, 1745-1769 (2016) (coauthor: D.Paindaveine).
  27. On some validity-robust tests for the homogeneity of concentrations, Journal of Nonparametric Statistics, Vol. 27, 372-383 (2015).
  28. High-dimensional tests for spherical location and spiked covariance, Journal of Multivariate Analysis, Vol. 139, 79-91 (2015) (coauthors: C.Ley and D. Paindaveine).
  29. Optimal rank-based tests for the location parameter of a rotationally symmetric distribution on the hypersphere. Mathematical Statistics and Limit Theorems – Festschrift in Honour of Paul Deheuvels, Springer, 249-270 (2015) (coauthor: D.Paindaveine).
  30. Local powers of optimal one- and multi-sample tests for the concentration of Fisher- von Mises-Langevin distributions. International Statistical Review, Vol. 82, 440–456 (2014) (coauthor: C.Ley).
  31. Efficient R-estimation of principal and common principal components. Journal of the American Statistical Association, Vol. 109, 1071-1083 (2014) (coauthors: M. Hallin and D.Paindaveine).
  32. Simple, asymptotically distribution-free, optimal tests for reflective symmetry about a known circular median. Statistica Sinica, Vol. 24, 1319-1340 (2014) (coauthor: C.Ley).
  33. A new concept of quantiles for directional data and the angular Mahalanobis depth. Electronic Journal of Statistics, Vol. 8, 795-816 (2014) (coauthors: C.Ley and C.Sabbah).
  34. On Hodges and Lehmann’s ”6/pi result”. Contemporary Developments in Statistical Theory, Springer, 137-153 (2014) (coauthors: M.Hallin and Y.Swan).
  35. Optimal rank-based tests for Common Principal Components, Bernoulli, Vol. 19, 2524-2556 (2013) (coauthors: M. Hallin and D. Paindaveine).
  36. Optimal R-estimation of a spherical location. Statistica Sinica, Vol. 23(1), 305-333 (2013) (coauthors: C. Ley, Y. Swan and B.Thiam).
  37. R-estimation in linear models with stable errors. Journal of Econometrics, Vol. 172(2), 195-204 (2013) (coauthors: M.Hallin, Y.Swan and D.Veredas).
  38. Common principal components. Encyclopedia of Environmetrics Second Edition, A.-H. El-Shaarawi and W. Piegorsch (eds). John Wiley & Sons Ltd, Chichester, UK, pp. 447-449 (2012).
  39. A contribution to asymptotic inference on eigenvectors and eigenvalues of covariance and scatter matrices. Mémoire de l’Académie Royale des Sciences, des Lettres et des Beaux-Arts (2012).
  40. Rank-based tests for elliptical graphical modeling. Journal de la Société Française de Statistique, Vol. 153, 82-100 (2012) (coauthor: D.Paindaveine).
  41. Rank-based testing in linear models with stable errors. Journal of Nonparametric Statistics, Vol. 23, 305-320 (2011) (coauthors: M.Hallin, Y.Swan and D.Veredas).
  42. Optimal rank-based tests for Principal Component Analysis. Annals of Statistics, Vol. 38, 3245-3299 (2010) (coauthors: M. Hallin and D. Paindaveine).
  43. Testing for common principal components under heterokurticity. Journal of Nonparametric Statistics, Vol. 22, 879-895 (2010) (coauthors: M. Hallin and D. Paindaveine).
  44. Pseudo-Gaussian inference in heterokurtic elliptical Common Principal Components model. Annales de l’ISUP, LII, 9-24 (2008) (coauthors: M. Hallin and D. Paindaveine).